Skip to main content
Log in

Birth, life and death of developmental control genes: New challenges for the homology concept

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Understanding the interrelationship between the phylogeny of developmental control genes and the evolution of morphological features is a central goal of evolutionary developmental biology (evo-devo). It requires that one distinguishes properly between gene genealogy and function. Gene duplication, gene loss and speciation in combination with differential changes in gene function can generate complex evolutionary scenarios that require additional terms beyond homology for a proper description. Use and possible misuse of these terms, including “orthology”, “paralogy” and “subfunctionalization”, is exemplifed withAGAMOUS-like genes encoding transcription factors involved in flower and fruit development. This MADS-box gene subfamily demonstrates that homologous genes in different species with (almost) indentical functions can be paralogues rather than orthologues, corroborating that functional similarity of genes is not a valid criterion for orthology. Homeosis fails some tests of homology, but might be of greater evolutionary importance than previously assumed, justifying yet another term, “homocracy”. It describes organs that share the expression of the same patterning genes, irrespective of the homology of these organs. All in all this article opts for a careful use of a limited and well-chosen set of terms describing gene relationships and function, rather than the inflationary production of novel terms that may seem to be precise, but whose obscurity hampers communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouheif, E., Akam, M., Dickinson, W.J., Holland, P.W.H., Meyer, A., Patel, N.H., Raff, R.A., Roth, V.L., Wray, G.A., 1997. Homology and developmental gens. Trends Genet. 13, 432–433.

    Article  PubMed  CAS  Google Scholar 

  • Allen, K.D., 2002. Assying gene content inArabidopsis. Proc. Natl. Acad. Sci. USA 99, 9568–9572.

    Article  PubMed  CAS  Google Scholar 

  • Bateman, R.M., DiMichele, W.A., 2002. Generating and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 109–159.

    Google Scholar 

  • Baum, D.A., Donoghue, M.J., 2002. Transference of function, heterotopy and the evolution of plant development. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 52–69.

    Google Scholar 

  • Becker, A., Theißen, G., 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phys. Evol. 29, 464–489.

    Article  CAS  Google Scholar 

  • Bolker, J.A., Raff, R.A., 1996. Developmental genetics and traditional homology. Bioessays 18, 489–494.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D., Carpenter, R., Sommer, H., Hartley, N., Coen, E., 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the Plena-locus ofAntirrhinum. Cell 72, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A.B., Saidel, W.M., 2000. Defining sameness: historical, biological, and generative homology. Bioessays 22, 846–853.

    Article  PubMed  CAS  Google Scholar 

  • Davies, B., Motte, P., Peck, E., Saedler, H., Sommer, H., Schwarz-Sommer, Z., 1999.PLENA andFARINELLI: redundancy and regulatory interaction between twoAntirrhinum MADS-box factors controlling flower development. EMBO J 18, 4023–4034.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, W.J., 1995. Molecules and morphology: where’s the homology? Trends Genet. 11, 119–121.

    Article  PubMed  CAS  Google Scholar 

  • Egel, R., 2000. How ‘homology’ entered genetics. Trends Genet. 16, 437–439.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M., 1970. Distinguishing homologous from analogous proteins. Syst. Zool. 19, 99–113.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M., 2000. Homology—a personal view on some of the problems. Trends Genet. 16, 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.-I., Postlethwait, J., 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545.

    PubMed  CAS  Google Scholar 

  • Gogarten, J.P., Olendzenski, L., 1999. Orthologs, paralogs and genome comparisons. Curr. Opin. Genet. Dev. 9, 630–636.

    Article  PubMed  CAS  Google Scholar 

  • Kanno, A., Saeki, H., Kameya, T., Saedler, H., Theissen, G., 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52, 831–841.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, E.M., Di Stilio, V.S., Schluter, P.M., 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Intern. J. Plant Sci. 164, 1–11.

    Article  CAS  Google Scholar 

  • Kramer, E.M., Jaramillo, M.A., Di Stilio, V.S., 2004. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166, 1011–1023.

    Article  PubMed  CAS  Google Scholar 

  • Krizek, B.A., Meyerowitz, E.M., 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11–22.

    PubMed  CAS  Google Scholar 

  • Lewis, E.B., 1994. Homeosis: the first 100 years. Trends Genet. 10, 341–343.

    Article  PubMed  CAS  Google Scholar 

  • Liljegren, S.J., Ditta, G.S., Eshed, Y., Savidge, B., Bowman, J.L., Yanofsky, M.F., 2000.SHATTER-PROOF MADS-box genes control seed dispersal inArabidopsis. Nature 404, 766–770.

    Article  PubMed  CAS  Google Scholar 

  • Mindell, D.P., Meyer, A., 2001. Homology evolving. Trends Ecol. Evol. 16, 434–440.

    Article  Google Scholar 

  • Nielsen, C., Martinez, P., 2003. Patterns of gene expression: homology or homocracy? Dev. Genes Evol. 213, 149–154.

    PubMed  Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer, Berlin.

    Google Scholar 

  • Ohta, T., 1980. Evolution and Variation of Multigene Families, Lecture Notes in Biomathematics, vol. 37. Springer, Berlin.

    Google Scholar 

  • Ouzounis, C., 1999. Orthology: another terminology muddle. Trends Genet. 15, 445.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, C., 1988. Homology in classical and molecular biology. Mol. Biol. Evol. 5, 603–625.

    PubMed  CAS  Google Scholar 

  • Prince, V.E., Pickett, F.B., 2002. Splitting pairs: the diverging fates of duplicate genes. Nat. Rev. Genet. 3, 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Riedl, R., 1977. A systems-analytical approach to macro-evolutionary phenomena. Quart. Rev. Biol. 52, 351–370.

    Article  PubMed  CAS  Google Scholar 

  • Ronse De Craene, L.P. 2003. The evolutionary significance of homeosis in flowers: a morphological perspective. Int. J. Plant Sci. 164, S225-S235.

    Article  Google Scholar 

  • Rutishauser, R., Isler, B., 2001. Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): fuzzy Arberian morphology complements classical morphology. Ann. Bot. 88, 1173–1202.

    Article  Google Scholar 

  • Sattler, R., 1994. Homology, homeosis, and process morphology in plants. In: Hall, B.K. (Ed.), The Hierarchical Basis of Comparative Biology. Academic Press, New York, pp. 423–475.

    Google Scholar 

  • Sonnhammer, E.L.L., Koonin, E.V., 2002. Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet. 18, 619–620.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, M.E., 2004. Homology and homocracy revisited: gene expression patterns and hypotheses of homology. Dev. Genes Evol. 214, 418–421.

    Article  PubMed  CAS  Google Scholar 

  • Tautz, D., 1998. Debatable homologies. Nature 395, 17–19.

    Article  PubMed  CAS  Google Scholar 

  • Theißen, G., 2000. Shattering developments. Nature 404, 711–713.

    Article  PubMed  Google Scholar 

  • Theißen, G., 2002. Orthology: secret life of genes. Nature 415, 741.

    PubMed  Google Scholar 

  • Theißen, G., Kim, J., Saedler, H., 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484–516.

    PubMed  Google Scholar 

  • Theißen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.-U., Saedler, H., 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.

    Article  PubMed  Google Scholar 

  • Theißen, G., Becker, A., Kirchner, C., Münster, T., Winter, K.-U., Saedler, H., 2002. How land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 173–205.

    Google Scholar 

  • Wagner, G.P., Laubichler, M.D., 2004. Rupert Riedl and the re-synthesis of evolutionary and developmental biology: body plan and evolvability. J. Exp. Zool. (Mol. Dev. Evol.) 302B, 92–102.

    Article  Google Scholar 

  • Wray, G.A., Abouheif, E., 1998. When is homology not homology? Curr. Opin. Genet. Dev. 8, 675–680.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldman, K.A., Meyerowitz, E.M., 1990. The protein encoded by theArabidopsis homeotic geneAGAMOUS resembles transcription factors. Nature 346, 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Zahn, L.M., Leebens-Mack, J., Arrington, J.A., Hu, Y., Landherr, L., dePamphilis, C., Becker, A., Theissen, G., Ma, H., 2005. Conservation and divergence in theAGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol. Dev. in press.

  • Zardoya, R., Abouheif, E., Meyer, A., 1996. Evolution and orthology ofhedgehog genes. Trends Genet. 12, 496–497.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Theißen.

Additional information

From the 46th “Phylogenetisches Symposium”, Jena, Germany, November 20–21, 2004. Theme of the symposium: “Evolutionary developmental biology-new challenges to the homology concept?”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theißen, G. Birth, life and death of developmental control genes: New challenges for the homology concept. Theory Biosci. 124, 199–212 (2005). https://doi.org/10.1007/BF02814484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814484

Keywords

Navigation