Skip to main content

Advertisement

Log in

Multiple criteria analysis in the context of information imperfections: Processing of additional information

  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Facing the differences in the literature concerning the ways uncertainty, imprecision, ambiguity, indetermination, …, are denominated, we adopted the more general designation of information imperfections. The imperfections have various sources and kinds. In the decisional context, particularly in any multiple criteria decision aid process, the presence of the imperfections is unavoidable. It is then obvious to seek for additional information in order to reduce these imperfections. The question is then: how to deal with the additional information? The proposed procedure allows processing the additional information in a multiple criteria decision context affected by different kinds of imperfections of the information. This unified procedure is based on the Bayesian model and the adaptation of information revision rules from the uniattribute context to the multiattribute context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Azondékon, H.S. and Martel, J.M. (1999). Value of additional information in multicriterion analysis under uncertainty.European Journal of Operational Research, 117, 45–62.

    Article  Google Scholar 

  • Ben Amor S. (2004).Les imperfections de l’information dans une modélisation multicritère: leur traitement et le traitement d’une information additionnelle. Ph.D. Thesis, F.S.A., Université Laval.

  • Ben Khélifa, S., Martel, J.-M. (2001). A Distance-Based Collective Weak Ordering.Group Decision and Negotiation, 10, 317–329.

    Article  Google Scholar 

  • Bouchon-Meunier, B.B. (1995).La logique floue et ses applications. Addison-Wesley.

  • De Baets, B. and Mesiar, R. (1996). A possibilistic analogon of Bayes’ theorem, inProceedings of the International Workshop on Soft Computing, Kazan, Kazan State University, S. 101–106.

    Google Scholar 

  • De Baets, B. Tsiporkova, E. and Mesiar, R. (1999). Conditioning in possibility theory with strict order norms,Fuzzy Sets and Systems 106, 221–229.

    Article  Google Scholar 

  • Derot, B. Gareau, J. Kiss, L.N. and Martel, J.M. (1997). The SOLVER of Volvox Multicriterion Table, inMulticriteria Analysis, J. Climaco (Ed.) Springer Verlag, 113–123.

  • Dubois D., Prade H. and Sandri S. (1993). On possibility/probability transformations, inFuzzy Logic: State of the Art, Lowen and Roubens (eds). Kluwer Academic Publ., Dordrecht, 103–112.

    Google Scholar 

  • French, S. (1995). Uncertainty and imprecision: Modelling and analysis.Journal of the Operational Research Society, 46, 70–79.

    Article  Google Scholar 

  • Guitouni A., Martel JM., Bélanger M. and Hunter C. (1999). Managing a decision making situation in the context of the Canadian airspace protection.Working paper 1999–021, F.S.A., Université Laval, Canada, (submitted for publication to Military Operations Research Journal).

    Google Scholar 

  • Hadar J. and Russell W.R. (1969). Rules for Ordering Uncertain Prospects.American Economic Review 59, 25–340.

    Google Scholar 

  • Hanoch G. and Levy H. (1969). The Efficiency Analysis of Choice Involving Risk.Review of Economic Studies 36, 335–346.

    Article  Google Scholar 

  • Jabeur K, (2004),Une démarche générale d’aide aux membres d’un groupe à la recherche d’un résultat de consensus, Ph.D. Thesis, F.S.A., Université Laval.

  • Jabeur K, and Martel JM., (2002). Détermination d’un (ou plusieurs) système(s) relationnel(s) de préférence (S.R.P.) collectif(s) à partir des S.R.P. individuels.Document de travail 2002–011, F.S.A., Université Laval.

  • Jabeur K., Martel JM., and Ben Khélifa S. (2004). A Distance-Based Collective Preorder Integrating the relative Importance of the Group’s Members.Group Decision and Negotiation 13, 327–349.

    Article  Google Scholar 

  • Langewish A., and Choobineh F. (1996). Stochastic dominance tests for ranking alternatives under ambiguity.European Journal of Operational Research 95, 139–154.

    Article  Google Scholar 

  • Martel JM., and Zaras K. (1995). Stochastic dominance in multicriterion analysis under risk.Theory and Decision 39, 31–49.

    Article  Google Scholar 

  • Munda G. (1995). Multicriteria evaluation in a fuzzy environment. Physica-Verlag, Heidelberg.

    Google Scholar 

  • Roy B. (1978). ELECTRE III: Un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples.Cahiers du Centre d’Étude de Recherche Opérationnelle 20, 3–24.

    Google Scholar 

  • Roy B. (1985).Méthodologie Multicritère d’Aide à la Décision. Economica, Paris.

    Google Scholar 

  • Shafer G. (1976).A Mathematical Theory of Evidence. Princeton University Press, Princeton N.J.

    Google Scholar 

  • Roy, B. and Slowinski, R. (1993). Criterion of distance between technical programming and socio-economic priority.RAIRO: Recherche opérationnelle, 27, 45–60.

    Google Scholar 

  • Smets P., (1990), Constructing the pignistic probability function in a context of uncertainty, in:Uncertainty in Artificial Intelligence 5 Henrion M., Shachter RD, Kanal LN and Lemmer JF (eds.) North Holland, Amsterdam, 29–40.

    Google Scholar 

  • Smets, P. (1993). Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem.International Journal of Approximate Reasoning 9, 1–35.

    Article  Google Scholar 

  • Terano, T., Asai, K. and Sugeno M. (1992).Fuzzy Systems Theory and its Applications. Academic Press, Boston.

    Google Scholar 

  • Whitmore G. A. (1970). Third-Degree Stochastic Dominance.American Economic Review 60(27), 457–459.

    Google Scholar 

  • Zaras K. (2004). Rough approximation of a preference relation by a multi-attribute dominance for deterministic, stochastic and fuzzy decision problems.European Journal of Operational Research 159, 196–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Amor, S., Martel, JM. Multiple criteria analysis in the context of information imperfections: Processing of additional information. Oper Res Int J 5, 395–417 (2005). https://doi.org/10.1007/BF02941128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941128

Keywords