Abstract
Facing the differences in the literature concerning the ways uncertainty, imprecision, ambiguity, indetermination, …, are denominated, we adopted the more general designation of information imperfections. The imperfections have various sources and kinds. In the decisional context, particularly in any multiple criteria decision aid process, the presence of the imperfections is unavoidable. It is then obvious to seek for additional information in order to reduce these imperfections. The question is then: how to deal with the additional information? The proposed procedure allows processing the additional information in a multiple criteria decision context affected by different kinds of imperfections of the information. This unified procedure is based on the Bayesian model and the adaptation of information revision rules from the uniattribute context to the multiattribute context.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Azondékon, H.S. and Martel, J.M. (1999). Value of additional information in multicriterion analysis under uncertainty.European Journal of Operational Research, 117, 45–62.
Ben Amor S. (2004).Les imperfections de l’information dans une modélisation multicritère: leur traitement et le traitement d’une information additionnelle. Ph.D. Thesis, F.S.A., Université Laval.
Ben Khélifa, S., Martel, J.-M. (2001). A Distance-Based Collective Weak Ordering.Group Decision and Negotiation, 10, 317–329.
Bouchon-Meunier, B.B. (1995).La logique floue et ses applications. Addison-Wesley.
De Baets, B. and Mesiar, R. (1996). A possibilistic analogon of Bayes’ theorem, inProceedings of the International Workshop on Soft Computing, Kazan, Kazan State University, S. 101–106.
De Baets, B. Tsiporkova, E. and Mesiar, R. (1999). Conditioning in possibility theory with strict order norms,Fuzzy Sets and Systems 106, 221–229.
Derot, B. Gareau, J. Kiss, L.N. and Martel, J.M. (1997). The SOLVER of Volvox Multicriterion Table, inMulticriteria Analysis, J. Climaco (Ed.) Springer Verlag, 113–123.
Dubois D., Prade H. and Sandri S. (1993). On possibility/probability transformations, inFuzzy Logic: State of the Art, Lowen and Roubens (eds). Kluwer Academic Publ., Dordrecht, 103–112.
French, S. (1995). Uncertainty and imprecision: Modelling and analysis.Journal of the Operational Research Society, 46, 70–79.
Guitouni A., Martel JM., Bélanger M. and Hunter C. (1999). Managing a decision making situation in the context of the Canadian airspace protection.Working paper 1999–021, F.S.A., Université Laval, Canada, (submitted for publication to Military Operations Research Journal).
Hadar J. and Russell W.R. (1969). Rules for Ordering Uncertain Prospects.American Economic Review 59, 25–340.
Hanoch G. and Levy H. (1969). The Efficiency Analysis of Choice Involving Risk.Review of Economic Studies 36, 335–346.
Jabeur K, (2004),Une démarche générale d’aide aux membres d’un groupe à la recherche d’un résultat de consensus, Ph.D. Thesis, F.S.A., Université Laval.
Jabeur K, and Martel JM., (2002). Détermination d’un (ou plusieurs) système(s) relationnel(s) de préférence (S.R.P.) collectif(s) à partir des S.R.P. individuels.Document de travail 2002–011, F.S.A., Université Laval.
Jabeur K., Martel JM., and Ben Khélifa S. (2004). A Distance-Based Collective Preorder Integrating the relative Importance of the Group’s Members.Group Decision and Negotiation 13, 327–349.
Langewish A., and Choobineh F. (1996). Stochastic dominance tests for ranking alternatives under ambiguity.European Journal of Operational Research 95, 139–154.
Martel JM., and Zaras K. (1995). Stochastic dominance in multicriterion analysis under risk.Theory and Decision 39, 31–49.
Munda G. (1995). Multicriteria evaluation in a fuzzy environment. Physica-Verlag, Heidelberg.
Roy B. (1978). ELECTRE III: Un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples.Cahiers du Centre d’Étude de Recherche Opérationnelle 20, 3–24.
Roy B. (1985).Méthodologie Multicritère d’Aide à la Décision. Economica, Paris.
Shafer G. (1976).A Mathematical Theory of Evidence. Princeton University Press, Princeton N.J.
Roy, B. and Slowinski, R. (1993). Criterion of distance between technical programming and socio-economic priority.RAIRO: Recherche opérationnelle, 27, 45–60.
Smets P., (1990), Constructing the pignistic probability function in a context of uncertainty, in:Uncertainty in Artificial Intelligence 5 Henrion M., Shachter RD, Kanal LN and Lemmer JF (eds.) North Holland, Amsterdam, 29–40.
Smets, P. (1993). Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem.International Journal of Approximate Reasoning 9, 1–35.
Terano, T., Asai, K. and Sugeno M. (1992).Fuzzy Systems Theory and its Applications. Academic Press, Boston.
Whitmore G. A. (1970). Third-Degree Stochastic Dominance.American Economic Review 60(27), 457–459.
Zaras K. (2004). Rough approximation of a preference relation by a multi-attribute dominance for deterministic, stochastic and fuzzy decision problems.European Journal of Operational Research 159, 196–206.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ben Amor, S., Martel, JM. Multiple criteria analysis in the context of information imperfections: Processing of additional information. Oper Res Int J 5, 395–417 (2005). https://doi.org/10.1007/BF02941128
Issue Date:
DOI: https://doi.org/10.1007/BF02941128