Skip to main content
Log in

The contiguity in R/M

  • Notes
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Anr.e. degree c is contiguous if degwtt(A)=degwtt(B) for anyr.e. setsA, B∈c. In this paper, we generalize the notation of contiguity to the structure R/M, the upper semilattice of ther.e. degree set R modulo the cappabler.e. degree set M. An element [c]∈R/M is contiguous if [degwtt(A)]=[degwtt(B)] for anyr.e. setsA, B such that degT(A) degT(B)∈[c]. It is proved in this paper that every nonzero element in R/M is not contiguons, i.e., for every element [c]∈R/M, if [c]≠[o] then there exist at least twor.e. setsA, B such that degT(A), degT(B)∈[c] and [degwtt(A)]≠[degwtt(B)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ladner R E, Sasso L P. The weak truth table degrees of recursively enumerable sets.Ann. Math. Logic, 1975 4: 429–448.

    Article  MathSciNet  Google Scholar 

  2. Stob M. wtt-degrees and T-degrees of recursively enumerable sets.Journal of Symbolic Logic, 1983, 48: 921–930

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambos-Spies K, Jockusch C G, Jr., Shore R A, Soare R I. An algebraic decomposition of the recursively enumerable degrees and the coincidence of several classes with the promptly simple degrees.Trans. Amer. Math. Soc., 1984, 281: 109–128.

    Article  MATH  MathSciNet  Google Scholar 

  4. Schwarz S. The quotient semilattice of the recursively enumerable degrees modulo the cappable degrees.Trans. Amer. Math. Soc., 1984, 283: 315–328.

    Article  MATH  MathSciNet  Google Scholar 

  5. Sui Y, Zhang Z. The cupping theorem in R/M.Journal of Symbolic Logic, 1999, 64(2): 643–650.

    Article  MATH  MathSciNet  Google Scholar 

  6. Zhang Z, Sui Y. Branching element in R wtt /M wtt .Journal of Software, 2000, 11(4): 441–446.

    Google Scholar 

  7. Soare R I. Recursively Enumerable Sets and Degrees, ω-Series. Springer-Verlag, 1987.

  8. Zhang Z, Sui Y. There is no minimal r.e. degree in every nonzero [a]∈R/M.Journal of Software, 2000, 11(11): 1425–1429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zaiyue.

Additional information

The project is partially supported by the National Natural Science Foundation of China under Grant No.19971090.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Yuefei, S. The contiguity in R/M. J. Comput. Sci. & Technol. 17, 507–511 (2002). https://doi.org/10.1007/BF02943291

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02943291

Keywords

Navigation