Skip to main content
Log in

Waveguide devices based on active metallic photonic crystals

Guides d’ondes à base de cristaux photoniques métalliques actifs

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

We present a detailed analysis of waveguide devices patterned in two- and three-dimensional metallic photonic crystals. Tuning of guiding properties of electromagnetic waves is induced by a reflectivity modulation of waveguide walls by means of active electronic devices inserted in the 2D lattice. Such an active waveguide acts as a phase shifter in monomode operation as a consequence of the tunable capacitive coupling afforded by the 3D lattice. On this basis, various operating modes of multiport waveguide devices are investigated: (i) a switching operation in a T-shaped structure, (ii) highly directional lateral transfers in a multimode branch line coupler.

Résumé

Nous présentons une étude détaillée de structures guides d’ondes formées dans des cristaux photoniques métalliques bi- et tri-dimensionnels. L’accordabilité des propriétés de guidage des ondes électromagnétiques est obtenue par modulation de la réflectivité des murs des guides induite par l’insertion de composants actifs dans le réseau bidimensionnel. Un tel guide se comporte alors comme un déphaseur en régime monomode grâce au comportement capacitif modulable du réseau devenu tridimensionnel. Sur cette base, différents modes opératoires sont envisagés dans des structures multiports : (i) la commutation dans un guide en T (ii) le transfert latéral directif dans un coupleur simple branche en régime multimode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “PhotonicBand Gap Materials” edited by Soukoulis (C.M.), Kluwer Academic Publishers (1996) and references therein.

  2. Biswas (R.), Özbay (E.), Ho (K.M.), “Photonic band gaps with layer-by-layer double-etched structures”,J. Appl. Phys.,80, pp. 6749–6753 (1996).

    Article  Google Scholar 

  3. Cheng (C.C.), Scherer (A.), Arbet-Engels (V.), Yablonovitch (E.), “Lithographic band tuning in photonic band gap crystals”,J. Vac. Sci. Technol. B,14, pp. 4110–4114 (1996).

    Article  Google Scholar 

  4. Economou (E.N.), Sigalas (M.M.), “Classical wave propagation in periodic structures: cermet versus network topology”,Phys. Rev. B,48, pp. 13434–13438 (1993).

    Article  Google Scholar 

  5. Yablonovitch (E.), “Photonic crystals”,J. of Modern Optics,41, pp. 173–194 (1994).

    Article  Google Scholar 

  6. Hirayama (H.), Hamano (T.), Aoyagi (Y.), “Novel surface emitting laser diode using photonic band-gap crystal cavity”,Appl. Phys. Lett.,69, pp. 791–793 (1996).

    Article  Google Scholar 

  7. Yablonovitch (E.), “Inhibited spontaneous emission in solid-state physics and electronics”,Phys. Rev. Lett.,58, pp. 2059–2062 (1987).

    Article  Google Scholar 

  8. Rumsey (I.), Piket-May (M.), Kelly (P.K.), “Photonic bandgap structures used as filters in microstrip circuits”,IEEE Microwave and Guided Wave Letters,8, pp. 336–338 (1998).

    Article  Google Scholar 

  9. Radisic (V.), Qian (Y.), Coccioli (R.), Itoh (T.), “Novel 2D photonic bandgap structure for microstrip lines”,IEEE Microwave and Guided Wave Letters,8, pp. 69–71 (1998).

    Article  Google Scholar 

  10. Agi (K.), Brown (E.R.), McMahon (O.B.), Dill III(C.), Malloy (K.J.), “Design of ultrawideband photonic crystals for broadband antenna applications”,Electronics Letters,30, pp. 2166–2167 (1994).

    Article  Google Scholar 

  11. Sigalas (M.M.), Biswas (R.), Li (Q.), Crouch (D.), Leung (W.), Woodbury (R.J.), Lough (B.), Nielsen (S.), McCalmont (S.), Tuttle (G.), Ho (K.M.), “Dipole antennas on photonic band-gap crystals - Experiment and simulation”,Microwave and Optical Technology Letters,15, pp. 153–158 (1997).

    Article  Google Scholar 

  12. Ellis (T.J.), Rebeiz (G.M.), “MM-wave tapered slot antenna on micromachined photonic bandgap dielectrics”,IEEE MTT-S Digest, pp. 1157-1160 (1996).

  13. Kesler (M.P.), Maloney (J.G.), Shirley (B.L.), Smith (G.S.), “Antenna design with the use of photonic band- gap materials as all-dielectric planar reflectors”,Microwave and Optical Technology Letters,11, pp. 169–174 (1996).

    Article  Google Scholar 

  14. Cheng (S.D.), Biswas (R.), Özbay (E.), McCalmont (S.), Tuttle (G.), Ho (K.M.), “Optimized dipole antennas on photonic band gap crystals”,Appl. Phys. Lett.,67, pp. 3399–3401 (1995).

    Article  Google Scholar 

  15. Poilasne (G.), Lenormand (J.), Pouligen (P.), Mahkjoubi (K.), Terret (C.), Gélin (P.), “Theoretical study of interactions between antennas and metallic photonic bandgap materials”,Microwave and Optical Technology Letters,15, pp. 384–389 (1997).

    Article  Google Scholar 

  16. Lim (K.Y.), Ripin (D.J.), Petrich (G.S.), Koldziejski (L.A.), Ippen (E.P.), Mondol (M.), Villeneuve (P.R.), Fan (S.), Joannopoulos (J.D.), ‘Photonic band-gap waveguide microcavities: monorails and air bridges’,J. Vac. Sci. Technol. B,17, pp. 1171–1174 (1999).

    Article  Google Scholar 

  17. Mekis (A.), Chen (J.C.), Kurland (I.), Fan (S.), Villeneuve (PR.), Joannopoulos (J.D.), “High transmission through sharp bends in photonic crystals waveguides”,Phys. Rev. Lett.,77, pp. 3787–3790 (1996).

    Article  Google Scholar 

  18. Sigalas (M.M.), Biswas (R.), Ho (K.M.), Soukoulis (C.M.), Turner (D.), Vasiliu (B.), Kothari (S.C.), Lin (S.), ‘Waveguide bends in three-dimensional layer by layer photonic bandgap materials’,Microwave and Optical Technology Utters,23, pp. 56–59 (1999).

    Article  Google Scholar 

  19. Temelkuran (B.), Özbay (E.), “Experimental demonstration of photonic crystal based waveguides”,Appl. Phys. Lett.,74, pp. 486–488 (1999).

    Article  Google Scholar 

  20. Danglot (J.), Vanbésien (O.), Lippens (D.), “A 4-port resonant switch patterned in a photonic crystal”,IEEE Microwave and Guided Wave Letters,9, pp. 274–276 (1999).

    Article  Google Scholar 

  21. Fan (S.), Villeneuve (P.R.), Joannopoulos (J.D.), Haus (H.A.), “Channel drop tunneling through localized states”,Phys. Rev. Lett.,80, pp. 960–963 (1998).

    Article  Google Scholar 

  22. Gadot (F.), Ammouche (A.), De Lustrac (A.), Chelnokov (A.), Bouillault (F.), Crozat (P.), Lourtioz (J.M.), “Photonic band gap materials for devices in the microwave domain”,IEEE Transaction on Magnetics,34, pp. 3028–3031 (1999).

    Article  Google Scholar 

  23. Fan (S.), Villeneuve (P.R.), Joannopoulos (J.D.), Khan (M.J.), Manolatou (C.), Haus (H.A.), “Theoretical analysis of channel drop tunneling processes”,Phys. Rev. B,59, pp. 15882–15892 (1999).

    Article  Google Scholar 

  24. Lourtioz (J.M.), Lustrac (A.), Gadot (F.), Chelnokov (A.), Lippens (D.), Danglot (J.), Vanbésien (O.), “Toward Controllable Photonic Crystals for Centimeter- and Millimeter-Wave Devices ”,IEEE/OSA Journal of Lightwave Technology,17, pp. 2025–2031 (1999).

    Article  Google Scholar 

  25. Danglot (J.), Vanbésien (O.), Lippens (D.), “Active waveguides patterned in mixed 2D-3D metallic photonic crystal”,Electronics Letters,35, pp. 475–477 (1999).

    Article  Google Scholar 

  26. Chang (T.K.), Langley (R.J.), Parker (E.A.), “Active frequency-selective surfaces”,IEE Proc.-Microw. Antennas Propag.,143, pp. 62–66 (1996).

    Article  Google Scholar 

  27. Lheurette (E.), Mélique (X.), Mounaix (P.), Mollot (F.), Vanbésien (O.), Lippens (D.), “Capacitance engineering for InP-based heterostructure barrier varactor”,IEEE Elec. Dev. Lett.,19, pp. 338–340 (1998).

    Article  Google Scholar 

  28. Duez (V.), Mélique (X.), Vanbésien (O.), Mounaix (P.), Mollot (F.), Lippens (D.), “High capacitance ratio with GaAs/InGaAs/AlAs heterostructure quantum well-barrier varactor”,Elec. Lett.,34, pp. 1860–1861 (1998).

    Article  Google Scholar 

  29. HP85180 High Frequency Structure Simulator version 5.0, Hewlett-Packard Company, Network measurements Division (1997).

  30. Carbonell (J.), Vanbésien (O.), Lippens (D.), “Electric field patterns in finite two-dimensional wire photonic lattices”,Superlattices and Microstructures,22, pp. 597–605 (1997).

    Article  Google Scholar 

  31. Danglot (J.), Carbonell (J.), Fernandez (M.), Vanbésien (O.), Lippens (D.), “Modal analysis of guiding structures patterned in a metallic photonic crystal”,Appl. Phys. Lett.,73, pp. 2712–2714 (1998).

    Article  Google Scholar 

  32. Mekis (A.), Fan (S.), Joannopoulos (J.D.), “Bound states in photonic crystal waveguides and waveguide bends”,Phys. Rev. B,58, pp. 4809–4817 (1998).

    Article  Google Scholar 

  33. Burgnies (L.), Vanbésien (O.), Lippens (D.), “An analysis of wave patterns in multiport quantum waveguide structures”,Journal of Physics D: Applied Physics,32, pp. 706–712 (1999).

    Article  Google Scholar 

  34. Burgnies (L.), Vanbésien (O.), Lippens (D.), “Transient analysis of ballistic transport in stublike quantum waveguides”,Appl. Phys. Lett.,71, pp. 803–805 (1997).

    Article  Google Scholar 

  35. Vanbésien (O.), Lippens (D.), “Directional coupling in dual-branch electron-waveguide junctions”,Phys. Rev. B,52, pp. 5144–5153 (1995).

    Article  Google Scholar 

  36. Chang (C.C.), Yang (F.R.), Qian (Y.), Itoh (T.), “Recent advances in UC-PBG structures”,Proceedings of the 30 th European Microwave Conference, pp. 96-99 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanbésien, O., Danglot, J. & Lippens, D. Waveguide devices based on active metallic photonic crystals. Ann. Télécommun. 57, 22–37 (2002). https://doi.org/10.1007/BF02994609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02994609

Key words

Mots clés

Navigation