Skip to main content
Log in

Quantum factor graphs

Graphes de dépendance quantique

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The natural Hilbert Space of quantum particles can implement maximum-likelihood (ML) decoding of classical information. The “Quantum Product Algorithm” (QPA) is computed on a Factor Graph, where function nodes are unitary matrix operations followed by appropriate quantum measurement. QPA is like the Sum-Product Algorithm (SPA), but without summary, giving optimal decode with exponentially finer detail than achievable using SPA. Graph cycles have no effect on QPA performance. QPA must be repeated a number of times before successful and the ML codeword is obtained only after repeated quantum “experiments”. ML amplification improves decoding accuracy, and Distributed QPA facilitates successful evolution.

Résumé

L’espace de Hilbert naturel des particules quantiques permet l’implémentation du décodage suivant le Maximum de Vraisemblance (MV) des codes classiques. L’Algorithme de Produit Quantique (APQ) est calculé sur un graphe de dépendance où les fonctions sur les nceuds sont dèfinies par des matrices unitaires suivies par une mesure quantique appropriée. L’APQ est similaire à l’Algorithme Somme-Produit (ASP), sans la sommation, avec un décodage optimal donnant une plus grande précision que celle fournie par l’ASP. Les cycles dans les graphes n’affectent pas les performances de l’APQ. L’APQ doit être répété plusieurs fois pour aboutir au résultat et le mot de code optimal suivant le MV est obtenu uniquement après plusieurs tentatives de l’expérience quantique. L’amplification du MV améliore la précision de décodage et l’APQ distribué facilite la convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aji (S.M.), McEliece (R.J.), “The Generalized Distributive Law”,ieee Trans. Inform. Theory, Vol. IT-46, pp. 325–343, March 2000.

    Article  MathSciNet  Google Scholar 

  2. Berrou (C), Glavieux (A.), Thitimajshima (P.), “Near Shannon-Limit Error-Correcting Coding and Decoding: Turbo-Codes”, Proc. 1993 ieee Int. Conf. on Communications (Geneva, Switzerland), pp. 1064–1070, 1993.

  3. Divincenzo (D.P.), “Two-Bit Gates are Universal for Quantum Computation”, Phys. Rev. A 51, Vol. 1015, 1995, Also LANL arXiv:cond-mat/9407022.

  4. Gallaoer (R.G.), “Low Density Parity Check Codes”,IRE Trans. Inform. Theory, Vol. 1T-8, pp. 21–28, Jan. 1962.

    Article  Google Scholar 

  5. Kschischang (F.R.), Frey (B.J.), Loeliger (H.-A.), “Factor Graphs and the Sum-Product Algorithm,”ieee Trans. Inform. Theory, Vol. 47, no 2, pp. 498–519, Feb. 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. Mackay (D.J.C.), Neal (R.M.), “Near Shannon Limit Performance of Low Density Parity Check Codes,”Electronics Letters, Vol. 32, no 18, pp. 1645–1646, Aug 1996. Reprinted Vol. 33, n°6, pp. 457–458, Mar 1997.

    Article  Google Scholar 

  7. Parker (M.G.), Rumen (V), “The Quantum Entanglement of Bipolar Sequences”, Sequences and their Applications, SETA’OI, Bergen, Norvay, 13-17 May, 2001 Also http://www.ii.uib.no/- matthew/MattWeb.html.

  8. Raussendorf (R.), Briegel (H.J.), “Quantum Computing via Measurements Only”, LANL arXiv:quant-ph/0010033, 7 Oct2000.

  9. Shor (P.W.), “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer”,SIAM J. Computing, Vol. 26, pp. 1484-, 1997First appeared in Proceedings of the 35th Annual Symposium on the Theory of Computer Science, ed. S. Goldwasser, ieee Computer Society Press, Los Alamitos, CA, pp. 124, 1994, Expanded Version:LANL: quant-phl9508027.

    Article  MATH  MathSciNet  Google Scholar 

  10. Steane (A.M.), “Quantum Computing,”Rept.Prog.Phys., Vol. 61, pp. 117–173, 1998, AlsoLANL: quant-ph/9708022. [11] Tucci (R.R.), “How to Compile a Quantum Bayesian Net”,LANL: quant-ph/9805016, 7 May, 1998.

    Article  MathSciNet  Google Scholar 

  11. Tucci (R.R.), “Quantum Information Theory - A Quantum Bayesian Net Perspective”, LANL: quant-ph/9909039, 13 Sep, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew G. Parker.

Additional information

This work was funded by NFR Project Number 119390/431, and was presented in part at 2nd Int. Symp. on Turbo Codes and Related Topics, Brest, Sept. 4–7, 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, M.G. Quantum factor graphs. Ann. Télécommun. 56, 472–483 (2001). https://doi.org/10.1007/BF02995457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995457

Key words

Mots clés

Navigation