Skip to main content
Log in

Quelques applications de la télédétection à la physique des surfaces continentales

Some remote sensing applications to continental surface physics

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Résumé

L’amélioration de la modélisation des processus physiques mis en jeu dans le cycle de l’eau comme dans celui du carbone passe aujourd’hui par une description fine des surfaces continentales et des échanges à l’interface sol-végétation-atmosphère. Cet article illustre les potentialités de la télédétection, qui permet d’observer de faç on régulière et à des échelles spatiales toujours plus fines, pour retrouver des paramètres physiques caractérisant les surfaces observées. Les paramètres considérés sont : la végétation (type et densité), le contenu en eau du sol, et la rugosité du sol (microtopographie et couverture en cailloux).

Dans le cas de la végétation, les meilleurs résultats, pour la distinction entre les différents types de végétation, sont obtenus par combinaison d’images multi-sources (radar multitemporel, visible/infrarouge). Pour l’état hydrique du sol, dans le cas des données radar, on présente une approche semi-empirique, qui utilise un modèle de transfert radiatif pour corriger l’effet de la végétation ; et dans le cas des données en infrarouge thermique, l’inversion est réalisée par comparaison des données de satellite avec les simulations d’un modèle physique des échanges sol-végétation-atmosphère. Enfin, pour la rugosité, à l’heure actuelle, seule la partie modélisation directe, par différents modèles électromagnétiques approchés ou exacts, est effectivement validée.

Abstract

The improvement of the modelling of the physical processes related to the water or the carbon cycle requires an accurate description of the continental surfaces and the exchanges at the soil-vegetation-atmos-phere interface. This paper presents some results concerning the potentialities of remote sensing, which enables a regular Earth watching at more and more fine spatial resolution, for surface physical parameter retrieval. The physical parameters we consider here are : the vegetation (type and density), the soil water content, and the soil roughness (microtopography and stone cover).

In the case of the vegetation, the best results, in terms of distinction between the different kinds of vegetation, are obtained from combination of multisource images (multitemporal radar, visible/infrared). For soil moisture retrieval, in the case of the sar data, the approach presented is semi-empirical, using a radiative transfer model for vegetation effect correction ; and in the case of the thermal infrared data, the inversion is done by coupling satellite data and Soil Vegetation Atmosphere Transfer model. Finally, concerning soil roughness, nowadays, only the direct modelling, according to different electromagnetic models approximated or exact, is actually validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Baret (F.), Guyot (G.), Potentials and limits of vegetation indices for lai and par assessment,Remote Sensing of Environment (1991),35, pp. 161–173.

    Article  Google Scholar 

  2. Bouttier (F.), Mahfouf (J.F.), Noilhan (J.), Sequential assimilation of soil moisture from atmospheric low level parameters,Journal of Applied Meteorology (1993),32, n° 87, pp. 1335–1351.

    Article  Google Scholar 

  3. Calvet (J.C.),Noilhan (J.), From near-surface to root-zone soil moisture using year-round data,Journal of Hydrometeorology (2000), pp. 393–411.

  4. Carlson (T.N.), Regional estimates of surface moisture availability and thermal inertia,Remote Sensing of Environment (1986),1, pp. 197–247.

    Google Scholar 

  5. Carlson (T.N.), Gillies (R.R.), Schmugge (T.G.), An interpretation of methodologies for indirect measurement of soil water content,Agricultural and Forest Meteorology (1995),77, pp. 191–205.

    Article  Google Scholar 

  6. Chen (M.F.), Chen (K.S.), Fung (A.K.), A study of the validity of the Integral Equation Model by moment method simulation — cylindrical case,Remote Sensing of Environment (1989),29, pp. 217–228.

    Article  Google Scholar 

  7. Clevers (J.G.P.W.), Verhoef (W.), lai estimation by means of the wdvi: A sensitivity analysis with a combined prospect-sail model,Remote Sensing of Environment (1993),7, pp. 43–64.

    Google Scholar 

  8. Davidson (M.W.J.), Le Toan (T.), Mattia (F.), Satalino (G.), Manninen (T.), Borgeaud (M.), On the characterisation of agricultural soil roughness for radar remote sensing studies,IEEE Transactions on Geoscience and Remote Sensing (2000),38, pp. 630–640.

    Article  Google Scholar 

  9. Delworth (T.L.), Manabe (S.), The influence of potential evaporation on the variabilities of the simulated soil wetness and climate,Journal of Climate (1988),1, n° 5, pp 523–547.

    Article  Google Scholar 

  10. Dubois (P.C.), Van Zyl (J.), Engman (T.), Measuring soil moisture with imaging radars,IEEE Transactions on Geoscience and Remote Sensing (1995),33, pp. 877–895.

    Article  Google Scholar 

  11. Ducoudré (N.), Laval (K.), Perrier (A.), sechiba, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the lmd atmospheric general circulation model,Journal of Climate (1993),6, pp. 248–273.

    Article  Google Scholar 

  12. Franschetti (G.), Iodice (A.), Maddaluno (S.), Riccio (D.), A fractal-based theoretical framework for retrieval of surface parameters from electromagnetic backscattering,IEEE Transactions on Geoscience and Remote Sensing (2000),38, pp. 641–650.

    Article  Google Scholar 

  13. François (C), Cayrol (P.), Kergoat (L.), Moulin (S.), Assimilation techniques of remote sensing measurements into vegetation models: overview, limits and promises,Proceedings of the 8 e Symposium International « Mesures Physiques et Signatures en Télédétection », Ed. CNES (2001a), Aussois, France, pp. 649–658.

    Google Scholar 

  14. François (C),Quesney (A.),Ottlé (C), Sequential assimilation of sar/ers1 data into a coupled land surface hydrological model using an extended Kaiman filter,Journal of Hydrometeorology (2001b), submitted.

  15. Fung (A.K.), LI (Z.), Chen (K.S.), Backscattering from a randomly rough dielectric surface,ieee Transactions on Geoscience and Remote Sensing (1992),30, n° 2, pp. 356–369.

    Article  Google Scholar 

  16. Gillies (R.R.), Carlson (T.N.), Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models.Journal of Applied Meteorology (1995),34, pp. 745–755.

    Article  Google Scholar 

  17. Girard (MC), Girard (C), Traitement des données de télédétection,Dunod (1999).

  18. Harrington (F.), Field Computation by Moment Method,ieee Press, Series on Electromagnetic Waves (1968).

  19. Huete (A.R.), A soil-adjusted vegetation index (savi),Remote Sensing of Environment (1988),25, pp. 295–309.

    Article  Google Scholar 

  20. Jetten (V.), Boiffin (J.), de Roo (A.), Defning monitoring strategies for runoff and erosion studies in agricultural catchments: A simulation approach,European Journal of Soil Science (1996),47, pp. 579–592.

    Article  Google Scholar 

  21. Karam (M.A), Fung (A.K.), Lang (R.H.), Chauhan (N.S.), A microwave scattering model for layered vegetation,ieee Transactions on Geoscience and Remote Sensing (1992),30, pp. 767–784.

    Article  Google Scholar 

  22. Kaufman (Y.J.), Tanré (D.), Atmospheric resistant vegetation index (arvi) for eos-modis,ieee Transactions on Geoscience and Remote Sensing (1992),30, n° 2, pp. 261–270.

    Article  Google Scholar 

  23. Kerr (Y), Waldteufel (P.), Wigneron (J.-P.), Martinuzzi, Font (J.), Berger (M.), Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (smos) mission,ieee Transactions on Geoscience and Remote Sensing (2001),39, n° 8, pp. 1729–1735.

    Article  Google Scholar 

  24. Le Hégarat-Mascle (S.), Bloch (I.), Vidal-Madjar (D.), Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing,ieee Transactions on Geoscience and Remote Sensing (1997),35, n° 4, pp. 1018–1031.

    Article  Google Scholar 

  25. Le Hégarat-Mascle (S.), Bloch (I.), Vidal-Madjar (D.), Introduction of neighborhood information in evidence theory and application to data fusion between radar and optical images with partial cloud cover,Pattern Recognition (1998),31, n° 11, pp. 1811–1823.

    Article  Google Scholar 

  26. Le Hégarat-Mascle (S.), Quesney (A.), Vidal-Madjar (D.), Taconet (O.), Normand (M.), Loumagne (C), Land cover discrimination from multitemporal ers images and multispectral landsat images: a study case in an agricultural area in France,International Journal of Remote Sensing (2000),21, n° 3, pp. 435–456.

    Article  Google Scholar 

  27. Le Hégarat-Mascle (S.),Zribi (M.),Alem (F.),Weisse (A.), Soil moisture estimation from ers/sar data : toward an operational methodology,ieee Transactions on Geoscience and Remote Sensing (2001), submitted.

  28. Maître (H.), Traitement des images à synthèse d’ouverture,Hermès, 2000.

  29. Moran (M.S.), Clarke (T.R.), Inoue (Y.), Vidal (A.), Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index,Remote Sensing of Environment (1994),49, n° 3, pp. 246–263.

    Article  Google Scholar 

  30. Oh (Y), Sarabandi (K.), Ulaby (FT), An empirical model and an inversion technique for radar scattering from bare soil sur- faces,ieee Transactions on Geoscience and Remote Sensing (1992),30, n° 2, pp. 370–381.

    Article  Google Scholar 

  31. Ogilvy (O.), Theory of Wave Scattering from Random Rough Surfaces,Adam Hilder (1991).

  32. Ottlé (C), Vidal-Madjar (D.), Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the hapex-mobilhy region,Journal of Hydrology (1994),158, pp. 241–264.

    Article  Google Scholar 

  33. Pinty (B.), Verstraete (M.M.), gemi: A non linear index to monitor global vegetation from satellite,Vegetation (1992),101, pp. 15–20.

    Article  Google Scholar 

  34. Poesen (J.), Wesemael (W.), Bunte (B.), Solé Benet (A.), Variation of rock fragment cover and size along semi-arid hill slopes: a case-study from southeast Spain,Gemorphology (1998),23, pp. 323–335.

    Article  Google Scholar 

  35. Quesney (A.), Le Hégarat-Mascle (S.), Taconet (O.), Vidal-Madjar (D.), Wigneron (J.P.), Loumagne (C), Normand (M.), Estimation of watershed soil moisture index from ers/sar data,Remote Sensing of Environment (2000),72, n° 3, pp. 290–303.

    Article  Google Scholar 

  36. QI (J.), Chehbouni (A.), Huete (A.R., Kerr (Y), Sorooshian (S.), A modified soil adjusted vegetation index (msavi),Remote Sensing of Environment (1994),48, pp. 119–126.

    Article  Google Scholar 

  37. Rabin. (B.), Zribi. (M.), Ciarletti. (V), Boissard. (P.), Taconet (O.), Chapron (M.), Characterisation of the soil structure and microwave backscattering based on numerical three dimen-sional surface representation,Proceedings of the International Symposium « Physical Measurementsand Signatures in Remote Sensing », Ed. cnes, 1997, Courchevel, France, pp. 333–339

    Google Scholar 

  38. Rakotoarivony (L.), Taconet (O.), Vidal-Madjar (D.), Benallegue (M.), Radar backscattering over agricultural bare soils,Journal of Electromagnetic Waves Applications (1996),10, n°2, pp. 187–209.

    Article  Google Scholar 

  39. Rondeaux (G.), Vegetation monitoring by remote sensing: a review of biophysical indices.Photo-interpretation (1995),3, pp. 197–216.

    Google Scholar 

  40. Rondeaux (G.), Steven (M.), Baret (F.), Optimization of Soil-Adjusted Vegetation Indices,Remote Sensing of. Environment (1996),55, pp. 95–107.

    Article  Google Scholar 

  41. Rouse (J.W.),Haas (R.H.),Schell (J.A.), Deering (D.W.), Harlan (J.C.), Monitoring the vernal advancement of rétrogradation of natural vegetation,Final Report Type III nasa/gsfc (1974).

  42. Shafer (G.), A Mathematical Theory of Evidence, Princeton, NJ:Princeton University Press (1976).

    MATH  Google Scholar 

  43. Taconet (O.), Bernard (R.), Vidal-Madjar (D.), Evapotranspiration over an agricultural region using a surface flux/temperature model based on noaa-avhrr data,Journal of Climate and Applied Meteorology (1986),25, pp. 284–307.

    Article  Google Scholar 

  44. Talukdar (K.), Suivi interannuel et intersaisonnier de l’occupation des sols sur le bassin du Rhône à l’aide de l’imagerie optique noaa/avhrr,Rapport interne cetp (2001).

  45. Ulaby (F.T.), Moore (R.K.), Fung (A.K.), Microwave Remote Sensing Active and Passive,Artech House (1986).

  46. Van Zyl (J.J.), Unsupervised classification of scattering behaviour using radar polarimetry data,ieee Transactions on Geoscience and Remote Sensing (1989),27, n° 1, pp. 36–45.

    Article  Google Scholar 

  47. Verhoef (W), Light scattering by leaf layers with application to canopy reflectance modelling: the sail model,Remote Sensing of Environment (1984),16, pp. 125–141.

    Article  Google Scholar 

  48. Vermote (E.F), Tanré (D.), Deuzé (J.L), Herman (M.), Morcrette (J.J.), Second Simulation of the Satellite Signal in the Solar Spectrum: an overview,ieee Transactions on Geoscience and Remote Sensing (1997),35, n° 3, pp. 675–686.

    Article  Google Scholar 

  49. Walker (J.M.), Rowntree (PR.), The effect of soil moisture on circulation and rainfall in a tropical model,Journal of the Royal Meteorological Society (1977),103, pp 29–46.

    Article  Google Scholar 

  50. Wang (J.), Hsu (A.), SHI (J.C.), O’Neil (P.), Engman (T.), Estimating surface soil moisture from sir-c measurements over the Little Washita River watershed,Remote Sensing of Environment (1997),59, pp. 308–320.

    Article  Google Scholar 

  51. Wegmüller (U.),Werner (C.L.), Farmland monitoring with sar interferometry,Proceedings of IGARSS ’95, Firenze, July 10-14 1995.

  52. Zribi (M.), Taconet (O.), Mascle (S.), Vidal-Madjar (D.), Emblanch (C), Loumagne (C), Normand (M.), Backscattering behavior and simulation comparison over bare soils using sirc/xsar and Erasme 1994 data over Orgeval,Remote Sensing of Environment (1997),59, n° 2, pp. 256–266.

    Article  Google Scholar 

  53. Zribi (M.), Ciarletti (V), Taconet (O.), Boissard (P.), Chapron (M.), Paillé (J.), Rabin (B.), Backscattering on soil structure described by plane facets,International Journal of Remote Sensing, (2000a),21, n° 1, pp. 137–153.

    Article  Google Scholar 

  54. Zribi (M.), Ciarletti (V.), Taconet (O.), Paillé (J.), Boissard (P.), Chapron (M.), Characterisation of the soil structure and microwave backscattering based on numerical three dimensional surface representation: Analysis with a Brownian model,Remote Sensing of Environment (2000b),72, pp. 159–169.

    Article  Google Scholar 

  55. Zribi (M.), Ciarletti (V), Taconet (O.), Validation of a rough surface model based on fractional brownian geometry with sirc and Erasme radar data over Orgeval site,Remote Sensing of Environment (2000c),73, pp. 65–72.

    Article  Google Scholar 

  56. Zribi (M.), Le Hégarat-Mascle (S.), Ciarletti (V.),Taconet (O.),Vidal-Madjar (D.),Boussema (M.R.), Derivation of wild vegetation cover density in a semi-arid regions : ers2 radar evaluation,International Journal of Remote Sensing (2001a), submitted.

  57. Zribi (M.),Aquid (N.), Adar (E.), Macelloni (G.), Carlos Garcia (J.), Backscattering over bare soil surface with stone cover,Proceedings of igarss’2001, (2001b), Sidney, Australie, July 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. LE Hégarat-mascle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hégarat-mascle, S.L., Zribi, M. & Ottlé, C. Quelques applications de la télédétection à la physique des surfaces continentales. Ann. Télécommun. 56, 617–631 (2001). https://doi.org/10.1007/BF02995556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995556

Mots clés

Keywords

Navigation