Skip to main content
Log in

Remote sensing of oceanic current features by synthetic aperture radar — achievements and perspectives

Télédétection de Caractéristiques de Courants Océaniques par Radar À Synthèse D’ouverture: Réalisations et Perspectives

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

It is generally accepted that synthetic aperture radar (sar) images can be quite useful for a better understanding of hydrodynamic processes in the ocean, because they provide valuable information on the location and spatial scales of oceanic features such as fronts, internal waves, and eddies. However, the retrieval of actual surface current fields from the shape and modulation depth of radar signatures is a much more challenging problem, since the imaging mechanism is a complex and nonlinear two-step mechanism which cannot be inverted easily. In this article we review the state-of-the-art in modeling radar signatures of current features, and we present the concept of an iterative scheme for inverting radar images into current fields, which will be implemented within the framework of the European project marsais. We estimate the accuracy and spatial resolution of the proposed remote sensing system on the basis of findings from recent case studies and some dedicated simulations. According to the results of our analyses, it should be possible to retrieve spatial surface current variations and current gradients from a typical spaceborne C band sar image with an accuracy on the order of 20% and a spatial resolution on the order of 50 m.

Résumé

Il est généralement admis que les images de radars à synthèse d’ouverture (rso) peuvent être très utiles pour la compréhension des processus hydrodynamiques dans l’océan, car elles fournissent des informations de valeur sur la position et l’importance des caractéristiques de surface océaniques, tels les fronts, les ondes internes ou les tourbillons. Cependant, la récupération des champs de courants de surface à partir de la forme et de la modulation des signatures radars est un problème bien plus délicat, car le mécanisme d’imagerie se fait en deux étapes complexes et non-linéaires qui ne peuvent être inversées facilement. Dans cet article nous présentons l’état de l’art de la modélisation de la signature radar des caractéristiques de courant et nous présentons le concept d’un schéma itératif pour l’inversion des images radars en champs de courants. Ce schéma sera implanté dans le cadre du projet européen marsais. Nous estimons la précision et la résolution spatiale du système de télédétection proposé sur la base des découvertes provenant de cas d’études récents et de quelques simulations qui leur étaient dédiées. D’après les résultats de nos analyses, il devrait être possible de retrouver les variations spatiales des courants de surface et les gradients de courant à partir d’images RSO bande C typiques avec une précision de l’ordre de 20 % et une résolution spatiale d’environ 50 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpers (W.), Hennings (I.), A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar,J. Geophys. Res.,89, 10,529–10,546, 1984.

    Article  Google Scholar 

  2. Attema (E.),et al., Envisat asar Science and Applications, ESA Publication sp-1225, 56 pp., European Space Agency, Publications Division, Noordwijk, Netherlands, 1998.

    Google Scholar 

  3. Born (G.H.), Dunne (J.A.), Lame (D.B.), Seasat mission overview,Science,204, 1405–1406, 1979.

    Article  Google Scholar 

  4. Brandt (P.), Romeiser (R.), Rubino (A.), On the determination of characteristics of the interior ocean dynamics from radar signatures of internal solitary waves,J. Geophys. Res.,104, 30,039–30,047, 1999.

    Google Scholar 

  5. Chapron (B.), sar remote sensing of wind and wave fields,Annals of Telecommunications,56, n° 11–12.

  6. Chubb (S.R.)et al, Study of Gulf Stream features with a multi-frequency polarimetric sar from the Space Shuttle,ieee Trans. on Geosci. and Remote Sensing,37, 2495–2507, 1999a.

    Article  Google Scholar 

  7. Chubb (S.R.)et al.. Radar backscatter from breaking waves in Gulf Stream current convergence fronts,ieee Trans. on Geosci. and Remote Sensing,37, 1951–1966, 1999b.

    Article  Google Scholar 

  8. Elfouhaily (T.), Chapron (B.), Katsaros (K.), Vandemark (D.), A unified directional spectrum for long and short wind-driven waves,J. Geophys. Res.,102, 15,781–15,796, 1997.

    Article  Google Scholar 

  9. Goldstein (R.M.), Zebker (H.A.), Interferometric radar measurement of ocean surface currents,Nature,328, 707–709, 1987.

    Article  Google Scholar 

  10. Jansen (R.W.)et al. Subsurface, surface, and radar modeling of a Gulf Stream current convergence,J. Geophys. Res.,103, 18,723–18,743, 1998.

    Google Scholar 

  11. Jenkins (A.D.)et al., Intercomparison and improvement of sar ocean imaging interaction models,Final Rep. esa Contract 11969/96/nlJcn, 120 pp., European Space Agency, Noordwijk, Netherlands, 1998. [12]|Johannessen (J.A.) et al., Marine SAR Analysis and Interpretation System — MARSAIS,Annals of Telecommunications.,56, 11–12.

    Google Scholar 

  12. Lyzenga (D.R.), Effects of wave breaking on sar signatures observed near the edge of the Gulf Stream, inProc. 1996 International Geoscience and Remote Sensing Symposium (igarss ‘96), pp. 908–910, Inst. of Elec. and Electron. Eng., Piscataway, N.J., usa, 1996.

    Chapter  Google Scholar 

  13. Lyzenga (D.R.), Bennett (J.R.), Full-spectrum modeling of synthetic aperture radar internal wave signatures,J. Geophys. Res.,93, 12,345–12,354, 1988.

    Google Scholar 

  14. Plant (W.J.), A relationship between wind stress and wave slope,J. Geophys. Res.,87, 1961–1967, 1982.

    Article  Google Scholar 

  15. Romeiser (R.), Alpers (W.), An improved composite surface model for the radar backscattering cross section of the ocean surface, 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography,J. Geophys. Res.,102, 25,251–25,267, 1997.

    Google Scholar 

  16. Romeiser (R.), Alpers (W.), Wismann (V.), An improved composite surface model for the radar backscattering cross section of the ocean surface, 1. Theory of the model and optimization / validation by scatterometer data,J. Geophys. Res.,102, 25,237–25,250, 1997.

    Google Scholar 

  17. Romeiser (R.), Thompson (D.R.), Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents,ieee Trans. on Geosci. and Remote Sensing,38-II, 446–458, 2000.

    Article  Google Scholar 

  18. Romeiser (R.), Ufermann (S.), Stolte (S.), On the contribution of wave-wind interaction to the radar imaging mechanism of underwater bottom topography, manuscript in preparation, University of Hamburg, Hamburg, Germany, 2001.

    Google Scholar 

  19. Thompson (D.R.), Jensen (J.R.), Synthetic aperture radar interferometry applied to ship-generated waves in the 1989 Loch Linnhe experiment,J. Geophys. Res.,98, 10,259–10,269, 1993.

    Google Scholar 

  20. Ufermann (S.), Romeiser (R.), A new interpretation of multifrequency / multipolarization radar signatures of the Gulf Stream front,J. Geophys. Res.,104, 25,697–25, 706, 1999a.

    Google Scholar 

  21. Ufermann (S.), Romeiser (R.), Numerical study on signatures of atmospheric convective cells in radar images of the ocean,J. Geophys. Res.,104, 25,707–25,720, 1999b.

    Google Scholar 

  22. Ulaby (F.T.), Moore (R.K.), Fung (A.K.),Microwave Remote Sensing: Active and Passive, Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory, pp. 457–1067, Artech House, Norwood, MA, USA, 1982.

    Google Scholar 

  23. Valenzuela (G.R.), Theories for the interaction of electromagnetic and ocean waves — A review,Boundary Layer Meteorol.,13, 61–85, 1978.

    Article  Google Scholar 

  24. Wensink (G.J.)et al., Coastal Sediment Transport Assessment Using sar Imagery, c-star,Final Rep. MAS3-CT95-0035, Commission of the European Communities, Brussels, Belgium, 1999.

    Google Scholar 

  25. Wright (J.W.), A new model of sea clutter,ieee Trans. Antennas Propag.,AP-16, 217–223, 1968.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland Romeiser or Susanne Ufermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeiser, R., Ufermann, S. & Alpers, W. Remote sensing of oceanic current features by synthetic aperture radar — achievements and perspectives. Ann. Télécommun. 56, 661–671 (2001). https://doi.org/10.1007/BF02995560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995560

Key words

Mots clés

Navigation