Skip to main content
Log in

Classical optical corpuscular theory of semiconductor laser intensity squeezed-light generator

Théorie corpusculaire optique classique du bruit d’intensité des lasers à semiconducteurs et des états comprimés en intensité de la lumière

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Fluctuations of the stored energy and emitted power of a semiconductor laser are derived by a simple model in which the light is considered as a classical particle flow. The fundamental noise source is the shot noise associated with field to absorbing or emitting atoms con-version. The mirror loss noise is taken into account in the form of a classical partition noise. For quiet pumping conditions the pump is no more a noisy process and a non- fluctuating optical output is possible. The theory allows the description of the intensity squeezed (i.e. non- classical) states of light and its results agree with quantum theory. Optimal conditions for squeezed state of light generation and characterization are pointed out.

Résumé

Les fluctuations de l’énergie stockée et de la puissance émise par un laser à semiconducteurs sont déterminées par un modèle simple traitant la lumière comme un flux de particules classiques. Le mécanisme fondamental de bruit est alors le caractère corpusculaire du rayonnement et sa manifestation lors de l’émission stimulée et absorption associée au milieu actif. Les fluctuations associées aux pertes par miwir(s) sont exprimées par un bruit de partition. Pour une pompe calme, les fluctuations associées au courant injecté sont négligeables et la puissance émise peut devenir non fluctuante. La théorie présentée permet également la description des états comprimés en intensité de la lumière (appelés aussi états non classiques) et de retrouver les résultats des théories quantiques. Les conditions optimales pour la génération et la caractérisation d’état comprimés de la lumière sont alors discutées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  1. Agrawal (G. P.), Dutta (N. K.). Long-wavelength semiconductor lasers.Van Nostrand Reinhold Compagny, New York (1986), Chapitre 6.

    Google Scholar 

  2. Machida (S.), Yamamoto (Y.), Itaya (Y.). Observation of amplitude squeezing in a constant current-driven semiconductor laser.Phys. Rev. Lett. (9 March 1989),58, no 10, pp. 1000–1004.

    Article  Google Scholar 

  3. Richardson (W. H.), Shelby (R. M.). Non classical light from a semiconductor laser operating at 4 K.Phys. Rev. Lett. (22 Jan. 1990),64, no 4, pp. 400–403.

    Article  Google Scholar 

  4. Kitching (J.), Yariv (A.), Shevy (Y.). Room temperature generation of amplitude squeezed light from a semiconductor laser with weak optical feedback.Phys. Rev. Lett. (24 Apr. 1995),74, no 17, pp. 3372–3376.

    Article  Google Scholar 

  5. Inoue (S.), Machida (S.), Yamamoto (Y.), Ohzu (H.). Squeezing in an injection-locked semiconductor laser.Phys. Rev. A (3 Sep. 1993),48, no 3, pp. 2230–2234.

    Article  Google Scholar 

  6. Freeman (M. J.), Wang (H.), Steel (D. G.), Craig (R.), Scifres (D. R.). Amplitude-squeezed light from quantum well lasers.Opt. Lett. (1 March 1993),18, no 5, pp. 379–381.

    Article  Google Scholar 

  7. Freeman (M. J.), Wang (H.), Steel (D. G.), Craig (R.), Scifres (D. R.). Wavelength-tunable amplitude-squeezed light from a room-temperature quantum well laser.Opt. Lett. (15 Dec. 1993),18, no 24, pp. 2141–2143.

    Article  Google Scholar 

  8. Henry (C. H.). Theory of the linewidth of semiconductors lasers.IEEE J. of Quantum Electron (1982),18, no 2, pp. 259–264.

    Article  MathSciNet  Google Scholar 

  9. Marcenac (D. D.), Carroll (J. E.). Quantum mechanical model for realistic Fabry-Perot laser.IEE Proc. J. (June 1993),140, no 3, pp. 157–171.

    Google Scholar 

  10. Arnaud (J.). Classical theory of laser noise.Optic. Quantum Electronics (Feb. 1995),27, no 2, pp. 63–89.

    Article  Google Scholar 

  11. Loudon (R.), Knight (P. L.). Squeezed light.J. of Mod. Optics (1987),34, no 6/7, pp. 709–759.

    Article  MATH  MathSciNet  Google Scholar 

  12. Nilsson (B. O.). Noise mechanisms in laser diodes.IEEE Trans. ED (1994),41, no 11, pp. 2139–2150.

    Article  Google Scholar 

  13. Yamamoto (Y.), Machida (S.), Nilsson (O.). Squeezed-state generation by semiconductor lasers. In: Coherence, amplification and quantum effects in semiconductor lasers.John Wiley & Sons, Y Yamamoto (1992), pp. 461–535.

    Google Scholar 

  14. Schimpe (R.). Intensity noise associated with the lasing mode of a (GaAl)As diode laser.IEEE J. QE (1983),19, no 6, pp. 895–897.

    Article  Google Scholar 

  15. Joindot (I.). Bruit relatif d’intensité des lasers à semiconducteurs.Ann. Télécommun. (1991),46, no 3–4, pp. 191–204.

    Google Scholar 

  16. Vey (J. L.). Etude des états comprimés de la lumière générés par des lasers à semiconducteurs : applications aux télécommunications optiques.Thèse ENST 95022, Paris (1995).

  17. Agrawal (G.P.). Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers.IEEE J. QE (Nov. 1990),26, no 11, pp. 1901–1909.

    Article  Google Scholar 

  18. Orsal (B.), Signoret (P.), Peransin (J. M.), Daulaim (K.), Alabreda (R.). Correlation between electrical and optical photocurrent noises in semiconductor laser diodes.IEEE Trans. ED (1994),41, no 11, pp. 2151–2161.

    Article  Google Scholar 

  19. Tromborg (B.), Lassen (H.-E.), Olesen (H.). Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra.IEEE J. QE (Apr. 1994),30, no 4, pp. 939–956.

    Article  Google Scholar 

  20. Goodbar (E. F.), Ram (R. J.), Nagarajan (R.), Coldren (L. A.), Bowers (J. E.). Intensity noise and facet correlation in Fabry-Perot laser diodes with low facet reflectivities.Appl. Phys. Lett. (1995),66, no 25, pp. 3419–3421.

    Article  Google Scholar 

  21. Vey (J. L.), Gallion (P.). Amplitude squeezing with a Fabry-Perot semiconductor laser with non linear gain: existence of an optimum biasing condition.Opt. Lett. (1st Oct. 1995),20, no 19, pp. 2018–2020.

    Article  Google Scholar 

  22. Arnaud (J.). Photonic noise with non linear gain.Electron. Lett. (12th Sep. 1991),27, no 19, pp. 1756–1757.

    Article  Google Scholar 

  23. Arnaud (J.). Amplitude squeezing from spectral-hole burning: a semiclassical theory.Phys. Rev. A (Sep. 1993),48, no 3, pp. 2235–2245.

    Article  Google Scholar 

  24. Gallion (P.), Debarge (G.). Quantum phase noise and field correlation in single frequency semiconductor laser systems.IEEE J. QE (1984),20, no 4, pp. 343–349.

    Article  Google Scholar 

  25. Machida (S.), Yamamoto (Y.). Observation of amplitude squeezing from semiconductor lasers by balanced direct detectors with a delay line.Optics Letters (1989),14, no 19, pp. 1045–1047.

    Article  Google Scholar 

  26. Goodbar (E.). A Michelson interferometer with balanced detection for the characterisation of modulation and noise properties of a semiconductor lasers.IEEE J. QE (1993),20, no 4, pp. 1116–1147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Gallion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallion, P., Vey, JL. & Jérémie, F. Classical optical corpuscular theory of semiconductor laser intensity squeezed-light generator. Ann. Télécommun. 52, 235–250 (1997). https://doi.org/10.1007/BF02996067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02996067

Key words

Mots clés

Navigation