Abstract
Increasing both wavelength count and bit rate per channel is presently implemented in order to improve the use of optical fiber bandwidth. This calls for suitable device structures and technologies for both optoelectronic transducers and associated driving electronics. For transmission at 40 Gbit/s per channel, Si and III–V microelectronic technologies are presently investigated with first successful demonstrations. In this paper the potential of GaAs and InP-based technologies to answer the 40 Gbit/s requirements and expected subsequent evolutions is addressed.
Résumé
Augmentations du nombre de longueurs d’onde et du débit par canal sont deux voies permettant d’utiliser au mieux la bande passante des fibres optiques. Cela demande des technologies et des composants adaptés, à la fois pour les composants optoélectroniques et pour leur électronique de commande. Dans le cas des transmissions à 40 Gbit/s par canal, les technologies microélectroniques Si et III–V sont actuellement étudiées, avec des premières démonstrations encourageantes. Dans cet article, on présente le potential des technologies GaAs et InP à satisfaire les besoins des circuits 40 Gbit/s et des évolutions futures.
Similar content being viewed by others
References
Sitch (J.) Integrated circuits for fiber systems, (2002) Digest ofIEEE GaAs IC Symposium, pp. 19–22.
Tsai (H.S.), Kopf (R.), Melendes (R.), Melendes (M.), Tate (A.), Ryan (R.), Hamm (R.), Chen (Y.K.) 90 GHz baseband lumped amplifier, (2000),Electron. Let.,36, pp. 1833–1834.
Wooten (E.L.), Kissa (K.M.), Yi-Yan (A.), Murphy (E.J.), Lafaw (D.A.), Halemeier (P.F.), Maack (D.), Attanasio (D.V.), Fritz (D.J.), Mcbrien (G.J.), Bossi (D.E.), A review of Lithium Niobate modulators for fiber-optic communications systems, (2000),IEEE Journal Selec. Topics Quant. Electron.,6, pp. 69–82.
Scavennec (A.),Giraudet (L.) Optical Photodetectors, in Fiber Optic Communication Devices,Springer 2001, Editors NorbertGrote, HerbertVenghaus.
Green (M.M.), Momtaz (A.), Vakilian (K.), Wang (X.), Jen (H-C.), Chung (D.), Cao (J.), Carerosa (M.), Hairapetian (A.), Fujimori (I.), Cai (Y.) OC-192 transmitter in standard 0.18 µm CMOS, (2002),Techn. Digest IEEE ISSCC,1, pp. 248–249.
Razavi (B.) Prospects of CMOS technology for high-speed optical communication circuits, (2002),IEEE Journ. Solid-State Circuits,37, pp. 1135–1145.
Johnson (E.O.) Physical limitations on frequency and power parameters of transistors, (1965),RCA Review,26, pp. 163–177.
Delage (S.) Heterojunction bipolar transistors for millimeter-wave applications: trends and achievements, (2001),Annales Télécom.,56, no 1–2, pp. 5–14.
Bollaert (S.), Cordier (Y.), Zaknoune (M.), Parenty (T.), Happy (H.), Cappy (A.), HEMT’s capability for millimeter-waves applications, (2001),Annales Télécom.,56, no 1–2, pp. 15–26.
Virk (R.S.),Camargo (E.),Hajji (R.),Parker (S.),Benelbar (R.),Notomi (S.),Ohnishi (H.) 40-GHzmmics for optical modulator driver applications, (2002),IEEE MTT-Symposium, pp. 91–94.
Yuen (C.),Laursen (K.),Chu (D.),Mar (K.), 50 GHz high output voltage distributed amplifiers for 40 Gbit/seo modulator driver application, (2002),IEEE MTT-Symposium, pp. 481–484.
Lefevre (R.),Mouzzanar (W.),Lestra (A.),Vuye (S.),Ferling (D.),Jorge (F.),Pillet (D.),Idler (W.), Double distributed GaAsp-hemt Ics for 40 Gbit/s high output voltage driver modules, (2001),Techn. Digest GaAs mantech, pp. 134–136.
Nowotny (U.),Lao (Z.),Thiede (A.),Lienhart (H.),Hornung (J.),Kaufel (G.),Kohler (K.),Glorer (K.), 44 Gbit/s 4:1 multiplexer and 50 Gbit/s multiplexer in pseudomorphic AlGaAs/GaAs HEMT technology, (1998)IEEE ISCAS, Technical Dig. II, pp. 201–203.
Sitch (J.), HBTS in telecommunications,Solid-State Electron., (1997) 41, pp. 1397–1405.
Zampardi (P.J.), Runge (K.), Pierson (R.L.), Higgins (J.A.), Yu (R.) Mcdermott (B.T.), Pan (N.), Heterostructure-based high-speed/high-frequency electronic circuit applications,Solid-State Electron. (1999),43, pp. 1633–1643.
Emura (K.) Technologies for making full use of high-speed IC performance in the development of 40 Gb/s optical receivers,Solid-State Electron. (1999),43, pp. 1613–1618.
Amamiya (Y.),Suzuki (Y.),Kaanaka (M.),Hosoya (K.),Yamazaki (Z.),Mamada (M.),Takahashi (H.),Wada (S.),Kato (T.),Ikenaga (Y.),Tanaka (S.),Takeuchi (T.),Hida (H.) 40-Gbit/s optical receiver IC chipset — including a transimpedance amplifier, a differential amplifier, and a decision circuit — using GaAs-basedhbt technology, (2002), Proc.IEEE MTT-Symposium, pp. 87–90.
Yamashita (Y.), Endoh (A.), Shinohara (K.), Hikosaka (K.), Matsui (T.), Hiyamizu (S.), Mimura (T.), Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTS with an utrahigh fT of 562 GHz, (2002),IEEE Electron. Dev. Letters,23, pp. 573–575.
Yoneyama (M.), Miyamoto (Y.), Otsuji (T.), Toba (H.), Yamane (Y.), Ishibashi (T.), Miyazawa (H.), Fully electrical 40-Gbit/s TDM system prototype based on InP HEMT digital IC technologies, (2000),J. Ligthwave Technol.,18, pp. 34–43.
Murata (K.), Sano (K.), Sugitani (S.), Sugahara (H.), Enoki (T.), 100 Gbit/s multiplexing and demultiplexing IC operations in InP HEMT technology, (2002)Electronics Let.,38, pp. 1529–1531.
Enoki (T.), Arai (K.), Kohzen (A.), Ishii (Y.), Design and characteristics of InGaAs/InP composite-channel HFET’s, (1995) IEEE Trans. Electron. Dev.,42, pp. 1413–1417.
Maher (H.), Decobert (J.), Falcou (A.), Le Pallec (M.), Post (G.), Nissim (Y.I.), Scavennec (A.) A triple channel HEMT on InP (camel HEMT) of large-signal high-speed aplications, (1999), IEEE Trans. Electron. Dev.,46, pp. 37–40.
Rondeau (G.), Biblemont (S.), Decobert (J.), Post (G.) A monolithically integratedPIN-HEMT photoreceiver, (2000),Compound Semiconductors,6, pp. 83–84.
Meliani (C.), Post (G.), Rondeau (G.), Decobert (J.), Mouzzanar (W.), Dutisseuil (E.), Lefevre (R.), DC-92 GHz ultra broadband high gain InP HEMT amplifier with a 410 Hz gain-bandwidth product, (2002),Electron. Lett.,38, pp. 1175–1177.
Jensen (J.F.),Hafizi (M.),Stanchina (W.E.),Metzger (R.A.),Rensch (D.B.), 39.5 GHz static frequency divider implemented in a AlInAs/GaInAs HBT technology, (1992), Digest IEEE GaAs IC Symposium, pp. 101–104.
Ida (M.), Kurishima (K.), Watanabe (N.), Over 300 GHz fT and fMAX InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base, (2002) IEEE Electron. Dev. Let.,23, pp. 694–696.
Lee (S.), Kim (H.J.), Urteaga (M.), Krishnan (S.), Wei (Y.), Dahlstrom (M.), Rodwell (M.), Transferred-substrate InP/InGaAs/InP double heterojunction bipolar transistors with fmax=425 GHz, (2001),Electron. Let.,37, pp. 1096–1098.
Nguyen (N.X.),Fierro (J.),Peng (G.),Ly (A.),Nguyen (C.) Manufacturable commercial 4-inch InP hbt device technology, (2002),GaAs mantech Conf. Tech. Dig.
Kim (Y.M.),Dahlstrom (M.),Lee (S.),Rodwell (M.J.W.),Gossard (A.C.), High-performance InP/In0.53Ga0.47As/InP double HBTS on GaAs substrates, (2002), IEEE Electron. Dev. Let., pp. 297–299.
Sokolich (M.),Fields (C.),Shi (B.),Brown (Y.K.),Montes (M.),Martinez (R.),Kramer (A.R.),Thomas (S.),Madhav (M.), A low power 72.8 GHz static frequency divider implemented in AlInAs/InGaAshbt ic technology, (2000),Digest IEEE GaAs IC Symposium, pp. 81–84.
Henderman (A.),Sovero (E.A.),Xu (X.),WITT (K.),sts-768 multiplexer with full rate output data retimer in InPhbt, (2002),Digest IEEE GaAs ICs Symposium, pp. 211–214
Jagannathan (B.), Meghelli (M.), Rylyakov (A.V.), Groves (R.A.), Chinthakindi (A.K.), Schnabel (C.M.), Ahlgren, (D.A.), Freeman (G.G.), Stein (K.J.), Subbanna (S.), A 4.2 ps ECL ring-oscillator in a 285-GHz fMAX SiGe technology, (2002), IEEE Electron. Dev. Let.,23, pp. 541–543.
Washio (K.),Ohue (E.),Hayami (R.),Kodama (A.),Shimamoto (H.),Miura (M.),Oda (K.),Suzumura (I.),Tominari (T.),Hashimoto (T.), Ultra-high-speed scaled-down self-alignedseg SiGe HBTS, (2002),Proc. iedm, pp. 767–770.
Blayac (S.),Riet (M.),Benchimol (J.L.),Alexandre (F.),Berdaguer (P.),Kahn (M.),Pinquier (A.),Dutisseuil (E.),Moulu (J.),Kasbari (A.),Konczykowska (A.),Godin (J.),msi InP/InGaAsdhbt technology: beyond 40 Gbit/s circuits, (2002),Proc. iprm Conf., pp. 51–54.
Kauffmann (N.), Blayac (S.), Abboun (M.), Andre (P.), Aniel (F.), Riet (M.), Benchimol (J-L.), Godin (J.), Konczykowska (A.), InP HBT driver circuit optimisation for high-speed ETDM transmission, (2001), IEEE J. Solid State Circ.,36, pp. 639–647.
Konczykowska (A.), Jorge (F.), Kasbari (A.), Sahri (N.), Godin (J.), 48 Gbit/s InP DHBT MS-DFF with very low time jitter, (2002),Electron. Let.,38, pp. 1081–1083.
Washio (K.), Ohue (E.), Oda (K.), Hayami (R.), Tanabe (M.), Shimamoto (H.), optimisation of characteristics related to the emitter-base junction in self-aligned SEG SiGe HBTS and their application in 72-GHz-dynamic frequency dividers, (2002), IEEE Trans. Electron Dev.,49, pp. 1755–1760.
Meghelli (M.), Rylyakov (A.V.), Shan (L.) 50-Gbit/s SiGe BiCMOS 4:1 multiplexer and 1:4 demultiplexer for serial communication systems, (2002), IEEE J. Solid-State Circuits,37, pp. 1790–1794.
Murata (K.),Sano (K.),Kitabayashi (H.),Sugitani (S.),Sugahara (H.),Enoki (T.), 100-Gbit/s logicics using 0.1-µm-gate-length InAlAs/InGaAs/InP HEMTS , (2002),Digest IEEE Int’l Electron Devices Meeting, pp. 937–939.
Sano (K.),Murata (K.),Sugitani (S.),Sugahara (H.),Enoki (T.), 50-Gbit/s 4-bit multiplexer/demultiplexer using InP HEMTS , (2002),), IEEE GaAs IC Symposium Tech. Dig., pp. 207–210.
Sano (K.),Murata (K.),Sugitani (S.),Sugahara (H.),Enoki (T.), 1.7-W 50-Gbit/s InP HEMT 4:1 multiplexer IC with a multi-phase clock architecture, (2002), IEEE GaAs IC Symposium Tech. Dig., pp. 159–162.
Yoneyama (M.), Miyamoto (Y.), Otsuji (T.), Toba (H.), Yamane (Y.), Ishibashi (T.), Miyazawa (H.), Fully electrical 40-Gbit/s TDM system prototype based on InP HEMT digital IC technology, (2000),Journ. Lightwave Technol.,18, pp. 34–43.
Murata (K.), Sano (K.), Sano (E.), Sugitani (S.), Enoki (T.), Fully monolithic integrated 43 Gbit/s clock and data recovery circuit in InP HEMT technology, (2001),Electron. Let.,37, pp. 1235–1237.
Nakajima (H.), Sano (E.), Ida (M.), Yamahata (S.), 80 GHz 4:1 frequency divider IC using non-self-aligned InP/InGaAs heterostructure bipolar transistors, (2000)Electron. Let.,36, pp. 34–35.
Ishii (K.), Murata (K.), Ida (M.), Kurishima (K.), Enoki (T.), Shibata (T.), Sano (E.), Very-high-speed selector IC using InP/InGaAs heterojunction bipolar transistors, (2002),Electron. Let.,38, pp. 480–481.
Mattia (J.P.),Pullela (R.),Georgieu (G.),Baeyens, Y.),Tsai (H.S.),Chen (Y.K.),Dorschky (C.),Winkler Von Mohrenfels (T.),Reinhold (M.),Groepper (C.),Sokolich (M.),Nguyen (L.),Stanchina (W.), High-speed multiplexers: a 50 Gbit/s 4:1 MUX in InPhbt technology, (1999),Digest IEEE GaAs IC Symposium, pp. 189–192.
Sano (E.),Nakajima (H.),Watanabe (N.),Yamahata (S.),Ishii (Y.), 40 Gbit/s 1:4 demultiplexer IC using InP-based heterojunction bipolar transistors,Electron. Let.,35, pp. 2116–2117.
Nosaka (H.),Sano (E.),Ishii (K.),Ida (M.),Kurishima (K.),Enoki (T.),Shibata (T.), A fully integrated 40 Gbit/s clock and data recovery circuit using InP/InGaAs HBTS, (2002),Digest ieee mtt-Symposium, pp. 83–86.
Huber (A.), Huber (D.), Bergamaschi (C.), Morf (T.), Jaeckel (H.), Lumped DC-50 GHz amplifier using InP/InGaAs HBTS, (1999),Electron. Lett.,35, pp. 53–54.
Tsai (H.S.), Kopf (R.), Melendes (R.), Melendes (M.), Tate (A.), Ryan (R.), Hamm (R.), Chen (Y.K.), 90 GHz baseband lumped amplifier, (2000),Electron. Lett.,36, p.1833–1835.
Baeyens (Y.), Pullela (R.), Mattia (J.P.), Tsai (H.S.), Chen (Y.K.), A 74-GHz bandwidth InAlAs/InGaAs-InP HBT distributed amplifier with 13-dB gain, (1999), IEEE Microwave and Guides Waves Lett.,9, pp. 461–463.
Shigematsu (H.), Sato (M.), Hirose (T.), Watanabe (Y.) A 54-GHz distributed amplifiers with 6-Vpp output for a 40-Gbit/s LiNbO3 modulator driver, (2002) IEEE Journ. Solid-State Circuits,37, pp. 1100–1104.
Braunsein (J.), Tasker (P.J.), Hulsmann (A.), Schlechtweg (M.), Kohler (K.), Bronner (W.), Haydl (W.), Very broadband distributed amplifier to 75 GHz, (1993)Electron. Lett.,29, pp. 851–852.
Masuda (S.),Hirose (T.),Takahashi (T.),Nishi (M.),Yokokawa (S.),Iijima (S.),Ono (K.),Hara (N.),Joshin (K.), An over 110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission systems, (2002),Digest IEEE GaAs IC Symposium, pp. 99–102.
Heins (M.S.),Campbell (C.F.,Kao (M.Y.),Muir (M.E.)Caroll (J.M.), A GaAsmhemt distributed amplifier with 300Ghz Gain-Bandwidth product for 40-Gbit/s optical applications, (2002), ),Digest ieee mtt-Symposium, pp. 1061–1064.
Sato (M.),Shigematsu, Inoue (Y.),Arai (T.),Sawada (K.),Takahashi (T.),Makiyama (K.),Hirose (T.), 1,4-THZ Gain-bandwidth product InP-HEMTS preamplifier using an improved Cherry-Hoopertopology, (2002),Digest IEEE GaAs IC Symposium, pp. 167–170.
Krishnamurthy (K.),Pullela (R.),Chow (J.),Xu (J.),Jaganathan (S.),Mensa (D.),Rodwell (M.), High gain 40 Gbit/s InPhbt drivers foreo/ea modulators, (2003),Proc. Optical Fiber Conference, paperfo7.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Scavennec, A., Godin, J. & Lefevre, R. 40 Gbit/s transmission: III–V integrated circuits for opto-electronic interfaces. Ann. Télécommun. 58, 1485–1503 (2003). https://doi.org/10.1007/BF03001741
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF03001741
Key words
- Optical fiber transmission
- Optoelectronic device
- Integrated circuit
- III–V compound
- High rate
- State of the art
- Two-dimensional electron gas transistor
- Gallium arsenide
- Indium phosphide