Skip to main content
Log in

Adjacent satellite interference effects as applied to the outage performance of an earth- space system located in a heavy rain climatic region

Prise en Compte du Brouillage par Satellite Adjacent Affectant un Système Terre-Espace Situé Dans une Région Climatique à Pluie Intense

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Interference effects are of utmost importance to the reliable design of modern satellite communication systems operating at Ku and Ka bands. In these frequencies rain attenuation is the dominant fading mechanism particularly for Earth-space systems located in subtropical and tropical regions. On the other hand, the main propagation effect on interference between two adjacent satellite systems is considered to be the differential rain attenuation. The subject of the paper is the development of a procedure for the prediction of carrier-to-noise plus interference ratio (cnir) statistics, under the presence of rain fading conditions, applied to heavy rain climatic regions. The method is based on a model of convective raincells and the gamma distribution assumption for point rainfall rate statistics, which fits better than lognormal distribution in subtropical and tropical regions. A tropical raindrop size distribution is also adopted for the calculation of the power-law parameters of specific rain attenuation. The numerical results are concentrated on the analytical examination of various operational parameters upon the CNIR statistics and the subsequent outage performance of the system. Comparison of the proposed model with an already existing one is attempted and the necessity of the present procedure for application to locations belonging to subtropical/tropical zones becomes obvious.

Résumé

Les effets de brouillage ont une importance capitale dans la conception de systèmes fiables de télécommunication par satellite fonctionnant dans les bandes Ku (vers 12 GHz) ou Ka (vers 20 GHz). à ces fréquences, l’affaiblissement par la pluie est le mécanisme dominant d’évanouissement pour les systèmes Terre-espace situés dans les régions tropicales et subtropicales. D’autre part, on considère que le principal effet de la propagation sur le brouillage entre deux systèmes àsatellites adjacents est l’affaiblissement différentiel dû àla pluie. Le présent article a pour objet le développement d’une méthode de prédiction des propriétés statistiques du rapport signal àbruit plus brouillage (cnir), en présence d’évanouissements dus àla pluie, avec application en régions climatiques caractérisées par des pluies intenses. Cette méthode est fondée sur un modèle àcellules de pluie convectives et sur la modélisation statistique de l’intensité de pluie ponctuelle par une loi gamma, qui convient mieux aux régions tropicales et subtropicales que la loi log normale. Une distribution de la taille des gouttes tropicales est aussi adoptée pour calculer les paramètres de la loi en puissance qui représente l’affaiblissement linéique par la pluie. Les résultats numériques concernent principalement l’examen analytique de l’influence de divers paramètres opérationnels sur les propriétés statistiques du CNIR et des interruptions de transmission qui en découlent. Une comparaison du modèle proposé avec un modèle déjàexistant met en évidence la nécessité de la méthode proposée dans les zones tropicales et subtropicales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ϕi :

elevation angle of the slant path pointing toward satellite Si (i =1,2)

ε:

differential angle between two satellites

Δψ:

the differential azimuthal angle beween the projected slant paths

Ac :

rain attenuation of the wanted signal referring to Earth-space slant path ES1

Ai :

rain attenuation of the interfering signal referring to Earth-space slant path es2

A′c :

rain attenuation concerning the projection of the slant path ES1

A′i :

rain attenuation concerning the projection of the slant path es2

(CNR)nom :

Carrier-to-noise ratio at the receiver input under nominal conditions

(CIR)nom :

Carrier-to-interference ratio at the receiver input under nominal (clear-sky) conditions

(INR)nom :

Interference-to-noise ratio at the receiver input under nominal (clear-sky) conditions

(cnir):

Carrier-to-noise plus interference ratio at the receiver input operating under rain fade conditions

r:

non-exceedance level of the cnir (in dB)

f:

frequency of the incident wave

Lc :

effective average length of the Earth-satellite path ES1

Li :

effective average length of the Earth-satellite path es2

Lcd :

the projected Lc

Lid :

the projected Li

a, b:

Constants of the specific attenuation Ao (in decibels/kilometer)

H:

effective rain height (0° isotherm height)

Ho :

Average height above sea level of the Earth-station

vR βR :

Gamma statistical parameters of the point rainfall rate distribution.

a:

Characteristic parameter modeling the spatial inhomogeneity of the rainfall medium in Morita-Higutti model

Rm,Sr :

Lognormal statistical parameters of the point rainfall rate distribution

G:

Characteristic parameter modeling the spatial inhomogeneity of the rainfall medium in Lin’s model

ρo :

Spatial correlation coefficient of specific attenuation Ao (dB/km) between two points of the rain medium

ρ:

Correlation coefficient between the attenuations A′c and A′i

References

  1. Ha (T.T.), Digital Satellite Communications, USA (1991), MacMillan, New York, Second Edition.

    Google Scholar 

  2. Rogers (R.R.), Olsen R.L., Strickland (J.L.), Coulson (G.M.), Statistics of differential rain attenuation on adjcent Earth-space propagation paths,Ann. Telecommun. Fr. (1982),37, No. 11-12, pp. 445–452.

    Google Scholar 

  3. Matricciani (E.), Mauri (M.), Cochannel interference in sattelite communication systems derived from rain attenuation measurements at 20ghz,Int. Jour. of Sat. Commun. (1996),14, pp. 71–76.

    Article  Google Scholar 

  4. Mattriciani (E.), Copolar and cochannel satellite interference during rain at 11.6 GHz estimated from radar measurements,Int. Jour. of Sat. Commun. (1997),15, pp. 65–71.

    Article  Google Scholar 

  5. Kanellopoulos (J.D.), Ventouras (S.), Vazouras (C.N.), A revised model for the prediction of differential rain attenuation on adjacent Earth-space propagation paths, Radio Science, USA (1993),28, pp. 1071–1086.

    Article  Google Scholar 

  6. Kanellopoulos (J.D.), Livieratos (S.N.), Analysis of the total carrier-to-noise plus interference ratio statistics applied to adjacent satellite interference under the presence of rain,Journal of Electromagnetic Waves and Applications, (1998),12, No. 4, pp. 527–552.

    Article  Google Scholar 

  7. Morita (K.), Higuti (I.), Prediction methods for rain attenuation distributions of micro and millimeter waves,Review of the e.c.l., n.t.t. (1976),24, (7-8), p. 651.

    Google Scholar 

  8. ITU-Recommendation P-838, (1992), Specific attenuation model for use in prediction methods.

  9. Ajayi (CO.), Olsen (R.L.), Modelling of a tropical raindrop size distribution for microwave and millimeter wave applications,Radio Science, (USA), (1985),20, No. 2, pp. 193–202.

    Google Scholar 

  10. Crane (R.K.), Prediction of attenuation by rain,ieee Trans. on Commun., USA (1980), com -28, pp. 1717–1733.

    Article  Google Scholar 

  11. Crane (R.K.), A global model for rain attenuation prediction, (1978),ieee East Con. Rec, pp. 391–395.

  12. Laws (J.O.), Parsons (D.A.), The relationship of raindrop-size to intensity,Trans. Amer. Geophys. Union, (1943),24, pp.452–460.

    Google Scholar 

  13. Zhang (W.), Karhu (S. I.), Salonen (E.T.), Prediction of radiowave attenuations due to a melting layer of precipitation,ieee Transactions on Antennas and Propagation, (1994),42, pp. 492–500.

    Article  Google Scholar 

  14. Abramovitz (M.), Stegun (I.), Handbook of Mathematical Functions, USA (1965), Dover Publications, New York.

    Google Scholar 

  15. Kanellopoulos (J.D.), Panagopoulos (A.D.), Ice crystals and raindrop canting angle effects applied to satellite interference prediction with respect to heavy rain climatic zones, Ann. Telecommun., (2001),56, No. 5-6, pp. 353–362.

    Google Scholar 

  16. Kanellopoulos (J.D.), Panagopoulos (A.D.), Livieratos (S.N.), A comparison of copolar and cochannel satellite interference prediction models with experimental results at 11.6 Ghz and 20ghz,Int. Jour. of Sat. Commun., (2000),18, pp. 107–120.

    Article  Google Scholar 

  17. Kanellopoulos (J.D.), Ventouras (S.), Koukoulas (S.G.), A model for the prediction of the differential rain attenuation between a satellite path and an adjacent terrestrial microwave system based on the two-dimensional gamma distribution,Journal of Electromagnetic Waves and Applications, (1994),8, No.5, pp. 557–574.

    Google Scholar 

  18. Kanellopoulos (J.D.), Ventouras (S.), Koukoulas (S.G.), Prediction of the Outage Performance of an Unbalanced Orbital Diversity Earth-Space System (gamma Case),Journal of Electromagnetic Waves and Applications, (1993),7, No.9, pp. 1257–1270.

    Article  Google Scholar 

  19. Lin (S.H.), A method for calculating rain attenuation distribution on microwave paths,Bell Syst. Techn. Journal (1975),54, No. 6, pp. 1051–1085.

    Google Scholar 

  20. ITU-R Recommendation P 837-3, (2001) Characteristics of precipitation for propagation modelling.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Kanellopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panagopoulos, A.D., Kanellopoulos, J.D. Adjacent satellite interference effects as applied to the outage performance of an earth- space system located in a heavy rain climatic region. Ann. Télécommun. 57, 925–942 (2002). https://doi.org/10.1007/BF03005254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03005254

Key words

Mots clés

Navigation