Skip to main content
Log in

Maximum a posteriori fast fading channel estimation based exclusively on pilot symbols

ESTIMATION AU MAXIMUM A POSTERIORI D’UN CANAL AVEC EVANOUISSEMENTS RAPIDES BASÉE EXCLUSIVEMENT SUR DES SYMBOLES PILOTES

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

An innovations-based block-by-block maximum a posteriori fast fading channel estimation algorithm, based exclusively on the received samples of pilot symbols, is proposed. This algorithm enables the theoretical determination of the optimum positions of pilot symbols using the raw bit error rate criterion. Moreover, it can be reformulated simply using appropriate weighting of the projections of received pilot symbols samples on an extended orthonormal base. This base can be determined simply as a function of the statistical properties of the channel.

Résumé

On propose un algorithme ďestimation, bloc par bloc, ďun canal avec évanouissements rapides, basé sur ľinnovation et utilisant uniquement les échantillons reçus associés aux symboles pilotes. Cet algorithme permet de déterminer théoriquement les positions optimales des symboles pilotes dans le bloc en s’appuyant sur le critére du taux ďerreur binaire brut. De plus, il peut être reformulé simplement en utilisant une pondération appropriée des projections des échantillons reçus associés aux symboles pilotes sur une base orthonormale etendue. Cette base peut être déterminée simplement à partir des propriétés statistiques du canal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stein (S.), Fading Channel Issues in System Engineering, IEEE (JSAC) Journal on Selected Areas in Communications. (February 1987), SAC-5, n° 2.

  2. Sklar (B.), Rayleigh Fading Channels in Mobile Digital Communication Systems — Part I: Characterization,IEEE Communications Magazine, (September 1997).

  3. Lodge (J.H.), Moher (M.L.), Maximum Likelihood Sequence Estimation of CMP Signals Transmitted over Rayleigh Flat Fading Channels,IEEE Transactions on Communications, (June 1990),38, n° 6, pp. 787–794.

    Article  Google Scholar 

  4. Yu (X.),Pasupathy (S.), Innovations-Based MLSE for Rayleigh Fading Channels,IEEE Transactions on Communications. (February/March/April 1995), 43, n° 2/3/4.

  5. Matolak (D.W.),Wilson (S.G.), Detection for Statistically Known Time-Varying Dispersive Channel,IEEE Transactions on Communications. (December 1996),44, n° 12.

  6. Georghiades (C.N.),Han (J.C.), Sequence Estimation in the Presence of Random Parameters Via the EM Algorithm,IEEE Transactions on Communications. (March 1997),45, n° 3.

    Google Scholar 

  7. Hart (B.D.),Pasupathy (S.), Innovations-Based MAP Detection for Time-Varying Frequency-Selective Channels,IEEE Transactions on Communications. (September 2000),48, n° 9.

  8. Trigui (H.),Slock (S.), Training Sequence Aided Multichannel Identification in the Presence of Interference and Noise,IEEE Globecom Conference, Sydney, Australia. (November 1998).

  9. Schramm (P.),Müller (R.R.), Pilot Symbol Assisted BPSK on Rayleigh Fading Channels with Diversity: Performance Analysis and Parameter Optimization,IEEE Transactions on Communications, (December 1998),46, n° 12.

  10. Li (Y.),Seshadri (N.),Ariyavisitakul (S.), Channel Estimation for OFDM Systems with Transmitter Diversity in Mobile Wireless Channels,IEEE Journal of Selected Areas in Communications. (March 1999),17, n° 3.

    Google Scholar 

  11. Kim (S.R.), Jeong (Y.G.), Choi (I.-K.), Lee (S.), An Adaptive Pilot Symbol-Aided MMSE Receiver in Fading Channels.Proceedings of the IEEE International Conference on Communications, icc’99, Vancouver B.C., Canada. (June 6-10, 1999).

    Google Scholar 

  12. Onizawa (T.), Mizoguchi (M.), Sakata (T.), Morikura (M.), A Simple Adaptive Channel Estimation Scheme for OFDM Systems.Proceedings of the IEEE Vehicular Technology Conference (vrc ’99-Fall), Amsterdam. (September 1999).

    Google Scholar 

  13. Tsatsanis (M.K.), Xu (Z.), Pilot Symbol Assisted Modulation in Frequency Selective Fading Wireless Channels,IEEE Transactions on Signal Processing. (August 2000)48, n° 8, pp. 2353–2365.

    Article  Google Scholar 

  14. Moulines (E.), Duhamel (P.), Cardoso (J.F.), Mayrargue (S.), Subspace Methods for the Blind Identification of Multichannel FIR Filters,IEEE Transactions on Signal Processing. (February 1995),43, n° 2, pp. 516–526.

    Article  Google Scholar 

  15. Abed-Meraim (K.), Cardoso (J.F.), Gorokhov (A.), Loubaton (P.), Moulines (E.), On Subspace Methods for Blind Identification of Single-Input Multiple-Output Fir Systems,IEEE Transactions on Signal Processing. (January 1997),45, n° 1, pp. 42–56.

    Article  Google Scholar 

  16. Tsatsanis (M.K.), Giannakis (G.B.), Transmitter Induced Cyclostationarity for Blind Channel Equalization,IEEE Transactions on Signal Processing. (July 1997),45, pp. 1785–1794.

    Article  MATH  Google Scholar 

  17. Tong (L.), Perreau (S.), Blind Channel Estimation: From Subspace to Maximum Likelihood Methods,IEEE Proceedings. (1998),86, n° 10, pp 1951–1968.

    Article  Google Scholar 

  18. Muquet (B.), De Courville (M.), Duhamel (P.), Buzenac (V.), A Subspace-Based Blind and Semi-Blind Channel Identification Method for OFDM Systems,Signal Processing Advances in Wireless Communications, Annapolis, ML, USA. (May 1999).

    Google Scholar 

  19. Tong (L.), Zhao (Q.), Joint Order Detection and Blind Channel Estimation by Least Squares Smoothing,IEEE Transactions on Signal Processing. (September, 1999),47, n° 9, pp. 2345–2355.

    Article  MATH  Google Scholar 

  20. Zhou (S.), Giannakis (G.B.), Finite-Alphabet Based Channel Estimation for OFDM and Related Multi-Carrier Systems.Proceedings of the 34th Conference on Information Sciences and Systems (ass’00), Princeton University, Princeton, NJ, (March 15–17, 2000).

    Google Scholar 

  21. Tepedelenlioglu (C.), Giannakis (G.B.), Transmitter Redundancy for Blind Estimation and Equalization of Time and Frequency-Selective Channels,IEEE Transactions on Signal Processing. (July 2000),48, n° 7, pp. 2029–2043.

    Article  Google Scholar 

  22. Raheli (R.), Polydoros (A.), Tzou (C.-K.), Per-Survivor Processing: A General Approach to MLSE in Uncertain Environments,IEEE Transactions on Communications. (February/March/ April 1995),43, 2/3/4, pp. 354–264.

    Article  Google Scholar 

  23. Chang (K.-H.),Georghiades (C.N.), Iterative Joint Sequence and Channel Estimation for Fast Time-Varying Intersymbol Interference Channels.Proceedings of the IEEE International Conference on Communications (icc), (June 1995), pp. 357-361.

  24. Li (Y),Cimini (L.J.),Sollenberger (N.R.), Robust Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels,IEEE Transactions on Communications, (July 1998), 46, n° 7.

  25. Joham (M.), Utschick (W.), Nossek (J.A.), Zoltowski (M.), Semi-Blind Channel Estimation: A New Least-Squares Approach,Proceedings of the International Conference on Telecommunications, Cheju, Korea, (1999), pp. 416–420.

    Google Scholar 

  26. Siala (M.), Duponteil (D.), Maximum a Posteriori Multipath Channel Estimation for UTRA/FDD,FRAMES Workshop, Delft, The Netherlands, (January 18 and 19, 1999).

    Google Scholar 

  27. Siala (M.),Duponteil (D.), Iterative Rake Receiver with MAP Channel Estimation for DS-CDMA Systems,Annals of Telecommunications. (March-April 1999), 54, n° 3-4.

  28. Siala (M.), Duponteil (D.), Maximum a Posteriori Multipath Fading Channel Estimation for CDMA Systems,Proceedings of the IEEE Vehicular Technology Conference (VTC ’99), Houston, Texas. (May 16-20, 1999).

    Google Scholar 

  29. Siala (M.), Jaffrot (E.), Semi-Blind Maximum a Posteriori Fast Fading Channel Estimation for Multicarrier Systems,Dix-septieme colloque GRETSI, Vannes, (13-17 September, 1999).

    Google Scholar 

  30. Al-Susa (E.), A predictor-Based Decision Feedback Channel Estimation Method for COFDM with High Resilience to Rapid Time-Variations,Proceedings of the IEEE Vehicular Technology Conference (vtc’99-Fall), Amsterdam, (September 1999).

    Google Scholar 

  31. Komninakis (C.),Wesel (R.D.), Pilot-Aided Joint Data and Channel Estimation in Flat Correlated Fading,Proceedings of the IEEE Global Communications Conference GLOBECOM ’99. (1999).

  32. Yan (M.),Rao (B.D.), Joint Estimation of Fading Channel and Data with Antenna Arrays.33rd Asilomar Conference on Signals, Systems and Computers. (October 24-27, 1999).

  33. Unal (B.),Siala (M.), Sensitivity of the Semi-Blind Iterative MAP Channel Estimation for DS-CDMA Systems,IEEE Electronic Letters. (March 16, 2000),36, n° 6.

  34. Jaffrot (E.), Siala (M.), Turbo Channel Estimation for OFDM Systems on Highly Time and Frequency Selective Channels.ICASSP 2000, Istanbul (June 2000).

    Google Scholar 

  35. Valenti (M.C.), Iterative Channel Estimation for Turbo Codes Over Fading Channels,Proceedings of Wireless Communications and Networking Conference (WCNC) 2000, Chicago (Septembre 2000).

    Google Scholar 

  36. UMTS Forum. Minimum Spectrum Demand Per Public Terrestrial UMTS Operator in the Initial Phase. (1998).

  37. UMTS Forum, Candidate Extension Bands for UMTS/IMT-2000 Terrestrial Component. (January 1999).

  38. Brugger (R.), Single-Frequency Networks at 1.5 GHz for Digital Audio Broadcasting.European Broadcasting Union (EBU)Review-Technical. (Winter 1993).

  39. Malmgren (G.), On Local/Regional Single Frequency Networks.Proceedings Nordiskt Radiosymposium, NRS-95, Stockholm. (1995).

    Google Scholar 

  40. Malmgren (G.), Impact of Carrier Frequency Offset, Doppler Spread and Time Synchronisation Errors in OFDM Based SFN.Globecom ’96, London (November 1996).

    Google Scholar 

  41. Malmgren (G.), On the Performance of Single Frequency Networks in Correlated Shadow Fading,IEEE Transactions on Broadcasting, (1997)43, n° 3.

    Google Scholar 

  42. Mignone (V.),Morello (A.),Visintin (M.), An Advanced Algorithm for Improving DVB-T Coverage in SFN,Proceedings of the International Broadcasting Convention, (September 1997).

  43. Stojanovic (M.), Recent Advances in High-Speed Underwater Acoustic Communications,IEEE Journal of Ocean Engineering. (April 1996),21, n° 2.

    Google Scholar 

  44. Appleby (S.),Davies (J.), Time, Frequency and Angular Dispersion Modelling in the Underwater Communication Channel,Proceedings of IEEE Oceans. (1998).

  45. Van De Beek (J.-J.), Edfors (O.), Sandell (M.), Wilson (S. K.), Börjesson (P.O.), On Channel Estimation in OFDM Systems.Proceedings of the IEEE Vehicular Technology Conference (VTC ’95), Chicago (July 1995),2, pp. 815–819.

    Google Scholar 

  46. Edfors (O.),Sandell (M.),Van De Beek (J.-J.),Wilson (S.K.),Böorjesson (P.O.), OFDM Channel Estimation by Singular Value Decomposition.Proceedings of IEEE Vehicular Technology Conference (VTC ’96), Atlanta (April 1996), pp. 923-927.

  47. Edfors (O.), Sandell (M.), Van De Beek (J.-J.), Wilson (S.K.), Börjesson (P.O.), OFDM Channel Estimation by Singular Value Decomposition,IEEE Transactions on Communications, (July 1998),46, n° 7, pp. 931–939.

    Article  Google Scholar 

  48. Edfors (O.),Sandell (M.),Van De Beek (J.-J.),Wilson (S.K.),Börjesson (P.O.), Analysis of DFT-Based Channel Estimators for OFDM.Personal Wireless Communication, Kluwer Academic Publishers. (January 2000),12, n° 1.

  49. Haykin (S.), Adaptive Filter Theory,Prentice-Hall, New Jersey. (1986).

    Google Scholar 

  50. Scharf (L.L.), Statistical Signal Processing: Detection, Estimation and Time Series Analysis.Addison-Wesley Publishing Company, New York, (1991).

    MATH  Google Scholar 

  51. Siala (M.),Jaffrot (E.), Precédé ďEstimation Optimale ďun Canal de Propagation Reposant Uniquement sur les Symboles Pilotes et Estimateur Correspondant. Demande de Brevet Francais n° 00.11715 du 14 septembre 2000.

  52. Slepian (D.), Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty — V: The Discrete Case.The Bell Systems Technical Journal, (May-June 1978),57, n° 5.

  53. Winters (J.H.), Smart Antennas for Wireless Systems,IEEE Personal Communications. (February 1998).

  54. Salz (J.),Winters (J.H.), Effect of Fading Correlation on Adaptive Arrays in Digital Mobile Radio.IEEE Transactions on Vehicular Technology. (November 1994),43, n° 4.

    Google Scholar 

  55. Jakes (W.Jr.), Microwave Mobile Communications,New York, Wiley. (1974), pp. 642.

    Google Scholar 

  56. Clarke (R.H.), A Statistical Theory of Mobile Radio Reception.The Bell Systems Technical Journal, (July-August 1968),47, pp. 957–1000.

    Google Scholar 

  57. Lombardo (P.),Fedele (G.),Rao (M.M.), MRC Performance for Binary Signals in Nakagami Fading with General Branch Correlation,IEEE Transactions on Communications. (January 1999),47, n° 1.

    Google Scholar 

  58. Bingham (J.A.C.), Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come,IEEE Communications Magazine, (May 1990).

  59. Giannakis (G.B.), Filterbanks for Blind Channel Identification and Equalization,IEEE Signal Processing tetters. (June 97),4.

  60. Scaglione (A.),Giannakis (G.B.),Barbarossa (S), Redundant Filterbank Precoders and Equalizers, Part II: Blind Channel Estimation, Synchronization, and Direct Equalization.IEEE Transaction on Signal Processing. (July 1999),47.

  61. Proakis (J.G.), Digital Communications,Third edition, McGraw-Hill, New York. (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Siala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siala, M. Maximum a posteriori fast fading channel estimation based exclusively on pilot symbols. Ann. Télécommun. 56, 569–586 (2001). https://doi.org/10.1007/BF03008834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03008834

Key words

Mots clés

Navigation