Abstract
Delay differential equations are of sufficient importance in modelling real-life phenomena to merit the attention of numerical analysts. In this paper, we discuss key features of delay differential equations (DDEs) and consider the main issues to be addressed when constructing robust numerical codes for their solution. We provide an introduction to the existing literature and numerical codes, and in particular we indicate the approaches adopted by the authors. We also indicate some of the unresolved issues in the numerical solution of DDEs.
Similar content being viewed by others
References
H. Arndt, Numerical solution of retarded initial value problems: local and global error and step-size control, Numer. Math. 43 (1984) 343–360.
H. Arndt, P.J. van der Houwen and B.P. Sommeijer, Numerical interpolation of retarded differential equations,Delay Equations: Approximation, Theory and Applications, ISNM 72 (Birkhäuser, 1985) pp. 41–51.
M. Artola, Equations paraboliques à retardment, C.R. Acad. Sci. Paris 264 (1967) 668–671.
S. Arunsawatwong and V. Zakian,I MN recursions for long sequences of linear delay differential equations, Control Systems Centre report 791, UMIST, Manchester (1993).
U.M. Ascher and L.R. Petzold, The numerical solution of delay-differential-algebraic equations of retarded and neutral type, SIAM J. Numer. Anal., to appear.
G. Bader, Ein Mehrschrittverfahren mit variabler Schrittweite und variabler Ordnung zur Integration von Systemen retardierter Differentialgleichungen mit zustandsabhängiger Verzögerung, Diplomarbeit Universität Heidelberg (1983).
C.T.H. Baker, Propositions on the robustness of multistep formulae, Technical Report No. 244, University of Manchester (1994), J. Numer. Func. Anal. Optim., to appear.
C.T.H. Baker, Dynamics of discretized equations for DDEs,Proc. HERMIS ’94 Conf., Athens University of Economics and Business (Sept. 1994).
C.T.H. Baker and C.A.H. Paul, Computing stability regions — Runge-Kutta methods for delay differential equations, IMA J. Numer. Anal. 14 (1994) 347–362.
C.T.H. Baker and C.A.H. Paul, Parallel continuous Runge-Kutta methods and vanishing lag delay differential equations, Adv. Comp. Math. 1 (1993) 367–394.
C.T.H. Baker and C.A.H. Paul, A global convergence theorem for a class of parallel continuous explicit Runge-Kutta methods and vanishing lag delay differential equations, Technical Report No. 229, University of Manchester (1993); SIAM J. Numer. Anal. (1996), to appear.
C.T.H. Baker, C.A.H. Paul and D.R. Willé, A bibliography on the numerical solution of delay differential equations, Technical Report, University of Manchester, in preparation.
C.T.H. Baker, J.C. Butcher and C.A.H. Paul, Experience of STRIDE applied to delay differential equations, Technical Report No. 208, University of Manchester (1992).
H.T. Banks and F. Kappel, Spline approximations for functional differential equations, J. Diff. Eqns. 34 (1979) 496–522.
V.K. Barwell, Special stability problems for functional differential equations, BIT 15 (1975) 130–135.
A. Bellen, One-step collocation for delay differential equations, J. Comp. Appl. Math. 10 (1984) 275–283.
A. Bellen and M. Zennaro, Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method, Numer. Math. 47 (1985) 301–316.
R.E. Bellman and K.L. Cooke,Differential-Difference Equations, Mathematics in Science and Engineering 6 (Academic Press, 1963).
R.E. Bellman and J.M. Danskin, A survey of the mathematical theory of time-lag, retarded control, and hereditary processes, R-256, The Rand Corporation, Santa Monica (1954).
R.E. Bellman, J.D. Buell and R.E. Kalaba, Mathematical experimentation in time-lag modulation, Commun. ACM 9 (1966) 752–753.
R.E. Bellman, J.D. Buell and R.E. Kalaba, Numerical integration of a differential-difference equation with a decreasing time-lag, Commun. ACM 8 (1965) 227–228.
H.G. Bock and J.P. Schlöder, Numerical solution of retarded differential equations with state-dependent time lags, Z. Angew. Math. Mech. 61 (1981) 269–271.
U. Buchacker and S. Filippi, Stepsize control for delay differential equations using a pair of Runge-Kutta formulae, J. Comp. Appl. Math. 26 (1989) 339–343.
K. Burrage,Parallel and Sequential Methods for Ordinary Differential Equations (OUP, 1995).
K. Burrage, J.C. Butcher and F.H. Chipman, An implementation of singly-implicit Runge-Kutta methods, BIT 20 (1980) 326–340.
J.C. Butcher, The adaptation of STRIDE to delay differential equations, Appl. Numer. Math. 9 (1992) 415–425.
J. Carr, The asymptotic behaviour of the solutions of some linear functional differential equations, D.Phil., University of Oxford (1974).
N.H. Chosky, Time-lag controls: a bibliography, IRE Trans. Auto. Cont. AC-5 (1966) 66–70.
C.W. Cryer, Numerical methods for functional differential equations,Delay and Functional Differential Equations, ed. K. Schmitt (Academic Press, 1972).
G. Dahlquist, Recent work of stiff differential equations, Technical Report No. TRITA-NA-7512, Royal Institute of Technology, Stockholm (1975).
R.D. Driver,Ordinary and Delay Differential Equations, Applied Mathematics Series 20 (Springer, 1977).
E.L. El’sgol’ts,Qualitative Methods in Mathematical Analysis, Transl. Math. Monog. 12 (Academic Press, 1964).
E.L. El’sgol’ts and S.B. Norkin,Introduction to the Theory and Applications of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering 105 (Academic Press, 1973).
W.H. Enright, Continuous numerical methods for ODEs and the implication for delay differential equations,Proc. HERMIS ’94 Conf., Athens University of Economics and Business (Sept. 1994).
W.H. Enright, The relative efficiency of alternative defect control schemes for high-order continuous Runge-Kutta formulas, SIAM J. Numer. Anal. 30 (1993) 1419–1445.
W.H. Enright, A new error-control for initial-value solvers, Appl. Math. Comp. 31 (1989) 288–301.
W.H. Enright, Analysis of error control strategies for continuous Runge-Kutta methods, SIAM J. Numer. Anal. 26 (1989) 588–599.
W.H. Enright and M. Hu, Interpolating Runge-Kutta methods for vanishing lag delay differential equations, Computer Science Technical Report No. 292/94, University of Toronto (1994).
W.H. Enright, K.R. Jackson, S.P. Norsett and P.G. Thomsen, Interpolants for Runge-Kutta formulas, ACM Trans. Math. Soft. 12 (1986) 193–218.
M.A. Feldstein, Discretization methods for retarded ordinary differential equations, Doctoral thesis, Department of Mathematics, UCLA (1964).
M.A. Feldstein and K.W. Neves, High-order methods for state-dependent delay differential equations with nonsmooth solutions, SIAM J. Numer. Anal. 21 (1984) 844–863.
M.A. Feldstein and J. Sopka, Numerical methods for nonlinear Volterra integro-differential equations, SIAM J. Numer. Anal. 11 (1974) 826–846.
K. Gopalsamy,Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer, Dordrecht, 1992).
E. Hairer, G. Wanner and S.P. Norsett,Solving Ordinary Differential Equations 1, Springer Series in Computational Mathematics 8 (Springer, 1983).
A. Halanay,Differential Equations: Stability, Oscillations, Time Lags, Mathematics in Science and Engineering 23 (Academic Press, 1966).
H. Hayashi and W.H. Enright, A new algorithm for vanishing delay problems, Canadian Applied Mathematics Society annual meeting, University of York (1993).
D.J. Higham, Highly continuous Runge-Kutta interpolants, ACM Trans. Math. Soft. 17 (1991) 368–386.
D.R. Hill, A new class of one-step methods for the solution of Volterra functional differential equations, BIT 14 (1974) 298–305.
K.J. in’t Hout, Runge-Kutta methods in the numerical solution of delay differential equations, Ph.D. thesis, Department of Mathematics and Computer Science, University of Leiden (1992).
K.J. in’t Hout, A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations, BIT 32 (1992) 634–649.
K.J. in’t Hout and M.N. Spijker, Stability analysis of numerical methods for delay differential equations, Numer. Math. 59 (1991) 807–814.
P.J. van der Houwen and B.P. Sommeijer, Linear multistep methods with reduced truncation error for periodic initial value problems, IMA J. Num. Anal. 4 (1984) 479–489.
P.J. van der Houwen and B.P. Sommeijer, Stability in linear multistep methods for pure delay equations, J. Comp. Appl. Math. 10 (1984) 55–63.
P.J. van der Houwen, B.P. Sommeijer and C.T.H. Baker, On the stability of predictor-corrector methods for parabolic equations with delay, IMA J. Num. Anal. 6 (1986) 1–23.
A. Iserles, Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Num. Anal. 10 (1990) 1–30.
A. Iserles and M. Buhmann, Stability of the discretized pantograph differential-equation, Math. Comp. 60 (1993) 575–589.
Z. Jackiewicz, Waveform relaxation methods for functional differential systems of neutral type,Proc. HERMIS ’94 Conf., Athens University of Economics and Business (Sept. 1994).
Z. Jackiewicz and E. Lo, The numerical integration of neutral functional-differential equations by fully implicit one-step methods, Technical Report No. 129, Arizona State University (1991).
F. Kappel and K. Kunisch, Spline approximations for neutral functional-differential equations, SIAM J. Numer. Anal. 18 (1981) 1058–1080.
T. Kato, Asymptotic behaviour of solutions of the functional differential equationsy′(x) = ay(λx) + by(x), in:Delay and Functional Differential Equations and Their Applications, ed. K. Schmitt (Academic Press, 1972).
T. Kato and J.B. McLeod, The functional differential equationy′(x) = ay(λx) + by(x), Bull. Amer. Math. Soc. 77 (1971) 891–937.
V.B. Kolmanovskii and A. Myshkis,Applied Theory of Functional Differential Equations, Mathematics and its Applications 85 (Kluwer, 1992).
V.B. Kolmanovskii and V.R. Nosov,Stability of Functional Differential Equations, Mathematics in Science and Engineering 180 (Academic Press, 1986).
P. Linz, Linear multistep methods for Volterra integro-differential equations, J. ACM 16 (1969) 295–301.
Y. Kuang,Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering 191 (Academic Press, 1993).
M.Z. Liu and M.N. Spijker, The stability of θ-methods in the numerical solution of delay differential equations, IMA J. Num. Anal. 10 (1990) 31–48.
Matlab, The Mathworks Inc., Natick, MA 01760.
K.W. Neves, Automatic integration of functional differential equations: an approach, ACM Trans. Math. Soft. 1 (1975) 357–368.
K.W. Neves and S. Thompson, Software for the numerical-solution of systems of functionaldifferential equations with state-dependent delay, Appl. Numer. Math. 9 (1992) 385–401.
K.W. Neves and M.A. Feldstein, Characterisation of jump discontinuities for state-dependent delay differential equations, J. Math. Anal. Appl. 56 (1976) 689–707.
H.J. Oberle and H.J. Pesch, Numerical treatment of delay differential equations by Herrnite interpolation, Num. Math. 37 (1981) 235–255.
J. Oppelstrup, The RKFHB4 method for delay differential equations, Lecture Notes in Mathematics 631 (1978) pp. 133–146.
B. Owren and M. Zennaro, Derivation of efficient, continuous, explicit Runge-Kutta methods, SIAM J. Sci. Stat. Comp. 13 (1992) 1488–1501.
C.A.H. Paul, Performance and properties of a class of parallel continuous explicit Runge-Kutta methods for ordinary and delay differential equations,Proc. HERMIS ’94 Conf., Athens University of Economics and Business (Sept. 1994).
C.A.H. Paul, Runge-Kutta methods for functional differential equations, Ph.D. thesis, Mathematics Department, University of Manchester (1992).
C.A.H. Paul, Developing a delay differential equation solver, Appl. Num. Math. 9 (1992) 403–414.
T.L. Saaty,Modern Nonlinear Mathematics (Dover, New York, 1967).
L.F. Shampine, Interpolation for Runge-Kutta methods, SIAM J. Numer. Anal. 22 (1985) 1014–1026.
L.F. Shampine and P. Bogacki, The effect of changing the stepsize in linear multistep codes, SIAM J. Sci. Stat. Comp. 10 (1989) 1010–1023.
H.L. Smith and Y. Kuang, Slowly oscillating periodic-solutions of autonomous state-dependent delay equations, Nonlinear Anal.-Theory, Meth. Appl. 19 (1992) 855–872.
H.J. Stetter, Numerische Lösung von Differentialgleichungen mit nacheilendem Argument, ZAMM 45 (1965) 79–80.
L. Tavernini, One-step methods for the numerical solution of Volterra functional differential equations, SIAM J. Numer. Anal. 8 (1971) 786–795.
L. Torelli, Stability of numerical methods for delay differential equations, J. Comp. Appl. Math. 25 (1989) 15–26.
L. Wiederholt, Stability of multistep methods for delay differential equations, Math. Comp. 30 (1976) 283–290.
L. Wiederholt, Numerical solution of delay differential equations, Ph.D. thesis, University of Wisconsin (1970).
D.R. Willé, Experiments in stepsize control for Adams linear multistep methods, Technical Report No. 94-11, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, University of Heidelberg (1994).
D.R. Willé, New stepsize estimators for linear multistep methods, Technical Report No. 93-47, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, University of Heidelberg (1993). [Note erratum.]
D.R. Willé and C.T.H. Baker, Some issues in the detection and location of derivative discontinuities in delay-differential equations, Technical Report No. 238, University of Manchester (1994).
D.R. Willé and C.T.H. Baker, Stepsize control and continuity consistency for state-dependent delay differential equations, J. Comp. Appl. Math. 53 (1994) 163–170.
D.R. Willé and C.T.H. Baker, The tracking of derivative discontinuities in systems of delay differential equations, Appl. Num. Math. 9 (1992) 209–222.
D.R. Willé and C.T.H. Baker, DELSOL — a numerical code for the solution of systems of delay differential equations, Appl. Numer. Math. 9 (1992) 223–234.
D.R. Willé and C.T.H. Baker, A short note on the propagation of derivative discontinuities in Volterra-delay integro-differential equations, Technical Report No. 187, University of Manchester (1990).
E.M. Wright, On a sequence defined by a non-linear recurrence formula, J. London Math. Soc. 20 (1945) 68–73.
M. Zennaro, Natural continuous extensions of Runge-Kutta methods, Math. Comp. 46 (1986) 119–133.
M. Zennaro,P-stability properties of Runge-Kutta methods for delay differential equations, Numer. Math. 49 (1986) 305–318.
Author information
Authors and Affiliations
Additional information
Communicated by J.C. Mason
Dedicated to Prof. John Butcher, FRSNZ
This paper arose from the talk given by Christopher Baker at the SCADE93 meeting held in honour of John Butcher’s sixtieth birthday.
Rights and permissions
About this article
Cite this article
Baker, C.T.H., Paul, C.A.H. & Willé, D.R. Issues in the numerical solution of evolutionary delay differential equations. Adv Comput Math 3, 171–196 (1995). https://doi.org/10.1007/BF03028370
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03028370