Skip to main content
Log in

Closed world assumptions having precedence in predicates

  • Regular Papers
  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

This paper extends Reiter’s closed world assumption to cases where the assumption is applied in a precedence order between predicates. The extended assumptions are: thepartial closed world assumption, thehierarchical closed world assumption and thestepwise closed world assumption. The paper also defines an extension of Horn formulas and shows several consistency results about the theory obtained from the extended Horn formulas by applying the proposed assumptions. In particular, the paper shows that both the hierarchical closed world assumption and the stepwise closed world assumption characterize the perfect model of stratified programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Apt, K. R., Blair, H., and Walker, A., “Towards a Theory of Declarative Knowledge,” inFoundations of Deductive Databases and Logic Programming (J. Minker ed.), Morgan Kaufmann, Los Altos, pp. 89–148, 1988.

    Google Scholar 

  2. Bossu, G. and Siegel, P., “Nonmonotonic Reasoning and Databases,” inAdvances in Database Theory, Vol. 2 (H. Gallaire, J. Minker, and J-M. Nicolas eds.), Plenum Press, New York, pp. 239–284, 1984.

    Google Scholar 

  3. Bossu, G. and Siegel P., “Saturation, Nonmonotonic Reasoning and the Closed World Assumption,”Artificial Intelligence, 25, pp. 13–63, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  4. Clark, K. L., “Negation as Failure,” inLogic and Data Bases (H. Gallaire and J. Minker, eds.), Plenum Press, New York, pp. 293–322, 1978.

    Google Scholar 

  5. Fagin, R., “Horn Clauses and Database Dependencies,”J. ACM, Vol.29, No. 4, pp. 952–985, Oct. 1982.

    Article  MATH  MathSciNet  Google Scholar 

  6. Ebbinghaus, H. D., Flum, J., and Thomas, W.,Mathematical Logic, Springer-Verlag, Berlin and New York, 1984.

    MATH  Google Scholar 

  7. Gallaire, H., Minker, J., and Nicolas, J-M., “Logic and Databases: A Deductive Approach,”Computing Surveys, Vol. 16, No. 2, pp. 153–185, June 1984.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gelfond, M. and Przymusinska, H., “Negation as Failure: Careful Closure Procedure,”Artificial Intelligence, 30, pp. 273–287, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gelfond, M., Przymusinska, H., and Przymusinski, T., “On the Relationship between Circumscription and Negation as Failure,”Artificial Intelligence, 38, pp. 75–94, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  10. Keisler, H. J.,Model Theory for Infinitary Logic, North-Holland Publishing Company, Amsterdam, 1971.

    MATH  Google Scholar 

  11. Lifschitz, V., “Closed-World Databases and Circumscription,”Artificial Intelligence, 27, pp. 229–235, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lifschitz, V., “Computing Circumscription,” inProceedings of IJCAI-85, pp. 229–235, 1985.

  13. Lifschitz, V., “On the Declarative Semantics of Logic Programming with Negation,” inFoundations of Deductive Databases and Logic Programming (J. Minker ed.), Morgan Kaufmann, Los Altos, pp. 177–192, 1988.

    Google Scholar 

  14. Lloyd, J. W.,Foundations of Logic Programming, Second, Extended Edition, Springer-Verlag, Berlin and New York, 1987.

    MATH  Google Scholar 

  15. McCarthy, J., “Circumscription—A Form of Circumscription to Formalizing Common-Sense Knowledge,”Artificial Intelligence, 28, pp. 89–116, 1986.

    Article  MathSciNet  Google Scholar 

  16. Mendelson, E.,Introduction to Mathematical Logic, 2nd Edition, D. Van Nostrand, New York, 1979.

    MATH  Google Scholar 

  17. Minker, J., “On Indefinite Databases and the Closed World Assumption,”Springer-Verlag Lecture Notes in Computer Science, No. 138, Springer-Verlag, Berlin and New York, pp. 292–308, 1982.

    Google Scholar 

  18. Przymusinski, T., “On the Declarative and Procedural Semantics of Stratified Disjunctive Databases,” inFoundations of Deductive Databases and Logic Programming (J. Minker ed.), Morgan Kaufmann, Los Altos, pp. 193–216, 1988.

    Google Scholar 

  19. Reiter, R., “On Closed World Data Bases,” inLogic and Data Bases (H. Gallaire and J. Minker, eds.), Plenum Press, New York, pp. 55–76, 1978.

    Google Scholar 

  20. Reiter, R., “Equality and Domain Closure in First-Order Databases,”J. ACM, Vol. 27, No. 2, pp. 235–249, April 1980.

    Article  MATH  MathSciNet  Google Scholar 

  21. Reiter, R., “Towards a Logical Reconstruction of Relational Database Theory,” inOn Conceptual Modeling (M. Brodie, J. Mylopoulos, and J. W. Schmidt, eds.), Springer-Verlag, Berlin and New York, pp. 191–238, 1984.

    Google Scholar 

  22. Shoenfield, J. R.,Mathematical Logic, Addison-Wesley Publishing Company, Massachusetts, 1967.

    MATH  Google Scholar 

  23. Shepherdson, J. C., “Negation as Failure: A Comparison of Clark’s Completed Data Base and Reiter’s Closed World Assumption,”J. Logic Programming, Vol. 1, No. 1, pp. 51–79, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  24. Yahya, A. and Henschen, L., “Deduction in Non-Horn Databases,”J. Autom. Reasoning, Vol. 1 No. 2, pp. 141–160, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  25. Van Gelder, A., “Negation as Failure Using Tight Derivations for General Logic Programming,”Third IEEE Symposium of Logic Programming, pp. 127–138, 1986.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Katsuno, H. Closed world assumptions having precedence in predicates. New Gener Comput 8, 185–209 (1990). https://doi.org/10.1007/BF03037516

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03037516

Keywords