Skip to main content
Log in

Evolutionary Computation in computer security and cryptography

  • Preface
  • Published:
New Generation Computing Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bagnall, A.J., Mc Keown, G.P. and Rayward-Smith, V.J., “The Cryptanalysis of a Three Rotor Machine Using a Genetic Algorithm,” inProc. of the 7th International Conference on Genetics Algorithms ICGA’97, Morgan-Kaufmann, 1997.

  2. Cain, T.R. and Sherman, A.T., “How to Break Gifford’s Cipher,” inProc. of the ACM Conference on Computer and Communications Security, pp. 198–209, 1994.

  3. Carroll, J.M. and Martin, S., “The Automated Cryptanalysis of Substitution Ciphers,”Cryptologia, X, 4, pp. 193–209, 1986.

    Article  Google Scholar 

  4. Carroll, J.M. and Robbins, L., “The Automated Cryptanalysis of Polyalphabetic Ciphers,”Cryptologia, XI, 4, pp. 193–205, 1987.

    Article  MathSciNet  Google Scholar 

  5. Clark, J.A. and Jacob, J.L., “Fault Injection and a Timing Channel on an Analysis Technique,” inProc. of Eurocrypt, pp. 181–197, 2002.

  6. Clark, A.J., “Optimization Heuristics for Cryptology,” Ph.D. Thesis, Information Security Research Center, Faculty of Information Technology, Queensland University of Technology, February 1998.

  7. Clark, A. and Dawson, E., “A Parallel Genetic Algorithm for Cryptanalysis of the Polyalphabetic Substitution Cipher,”Cryptologia, 21, 2, pp. 129–138, April, 1997.

    Article  Google Scholar 

  8. Daemen, J., Govaerts, R. and Vandewalle, J., “Efficient Pseudorandom Sequence Generation by Cellular Automata,” inProc. of the 12th Symposium on Information Theory in the Benelux, pp. 17–24, 1991.

  9. Daemen, J., Govaerts, R. and Vandewalle, J., “A Framework for the Design of One-way Hash Functions Including Cryptanalysis of Damgaard’s One Way Function Based on Cellular Automaton,”Advances in Cryptology: Proc. of Asiacrypt’ 91, LNCS, 739, pp. 82–96, 1993.

    Google Scholar 

  10. Horst, F., “Cryptography and Computer Privacy,”Scientific American, 228, 5, pp. 15–23, 1973.

    Article  Google Scholar 

  11. Forre, R., “The Strict Avalanche Criterion: Special Properties of Boolean Functions and Extended Definition,”Advances in Cryptology — CRYPTO’88, LNCS, 403, pp. 450–468, Springer-Verlag, 1988.

    MathSciNet  Google Scholar 

  12. Forsyth, W.S. and Safavi-Naini, R., “Automated Cryptanalysis of Substitution Ciphers,”Cryptologia, XVII, 4, pp. 407–418, 1993.

    Article  Google Scholar 

  13. Freking, A., Kinzel, W. and Kanter, I., “Learning and Predicting Time Series by Neural Networks,”Physical Review E, 65, 050903, May 2002.

  14. Ganesan, R. and Sherman, A.T., “Statistical Techniques for Language Recognition: An Introduction and Guide for Cryptanalysts,”Cryptologia, XVII, 4, pp. 321–366, 1993.

    Article  Google Scholar 

  15. Giddy, J.P. and Safavi-Naini, R., “Automated Cryptanalysis of Transposition Ciphers,”The Computer Journal,XVII,4, 1994.

  16. Hernandez, J.C., Isasi, P. and Ribagorda, A., “Genetic Cryptoanalysis of Two Rounds TEA,”LNCS, 2331, pp. 1024–1031, 2002.

    MathSciNet  Google Scholar 

  17. Hernandez, J.C. and Isasi, P., “Finding Efficient Distinguishers for Cryptographic Mappings, with an Application to the Block Cipher TEA,” inProc. of the 2003 Congress on Evolutionary Computation CEC 2003, pp. 341–348, IEEE Press, 2003.

  18. Hunter, D.G.N. and McKenzie, A.R., “Experiments with Relaxation Algorithms for Breaking Simple Substitution Ciphers,”The Computer Journal, 26, 1, pp. 68–71, 1983.

    Article  Google Scholar 

  19. Jakobsen, T., “A Fast Method for Cryptanalysis of Substitution Ciphers,”Cryptologia, XIX, 3, pp. 265–274, 1995.

    Article  Google Scholar 

  20. Kanter, I., Kinzel, W. and Kanter, E., “Secure Exchange of Information by Synchronization of Neural Networks,”Europhys, Lett.57, 141, 2002.

    Article  Google Scholar 

  21. King, J.C., “An Algorithm for the Complete Cryptanalysis of Periodic Polyalphabetic Substitution Ciphers,”Cryptologia, XVIII, 4, pp. 332–355, 1994.

    Article  Google Scholar 

  22. King, J.C. and Bahler, D.R., “An Implementation of Probabilistic Relaxation in the Cryptanalysis of Simple Substitution Ciphers,”Cryptologia, XVI, 3, pp. 215–225, 1992.

    Article  Google Scholar 

  23. Klimov, A., Mityaguine, A. and Shamir, A., “Analysis of Neural Cryptography” (Unpublished manuscript).

  24. Meier, W. and Staffelbach, O., “Analysis of Pseudo Random Sequences Generated by Cellular Automata Advances,” inCryptology-Proceedings of Eurocrypt’91 LNCS, 547, pp. 186–199, Springer-Verlag, 1991.

  25. Millan, W., Clark, A. and Dawson, E., “Smart Hill Climbing Finds Better Boolean Functions,”En Workshop on Selected Areas in Cryptology (SAC), pp. 50–63, Ottawa, Canada, August 1997.

  26. Millan, W., Clark, A. and Dawson, E., “An Effective Genetic Algorithm for Finding Boolean Functions,”International Conference on Information and Communications Security (ICICS), Beijing, China, November 1997.

  27. Peleg, S. and Rosenfeld, A., “Breaking Substitution Ciphers Using a Relaxation Algorithm,”Communications of the ACM, 22, 11, pp. 598–605, 1979.

    Article  MATH  Google Scholar 

  28. Pointcheval, D., “A new Identification Scheme Based on the Perceptron Problems,”En Advances in Cryptology Eurocrypt 95, LNCS, Springer-Verlag, 1995.

  29. Ramesh, R.S., Athithan G. and Thiruvengadam, K., “An Automated Approach to Solve Simple Substitution Ciphers,”Cryptologia, XVII, 2, pp. 202–218, 1993.

    Article  Google Scholar 

  30. Rosenfeld, A., Hummel, R.A. and Zucker, S.W., “Scene Labeling by Relaxation Operations,”SMC, 6, 6, pp. 421–433, 1976.

    MathSciNet  Google Scholar 

  31. Rosen-Zvi, M. Kanter, I. and Kinzel, W., “Cryptography Based on Neural Networks-analytical Results” (Unpublished manuscript).

  32. Sheng-Uei and S. Zhang, “An Evolutionary Approach to the Design of Controllable Cellular automata Structure for Random Number Generation,”IEEE Transactions on Evolutionary Computation, 7, 1, February 2003.

    Google Scholar 

  33. Slipper, M. and Tomassini, M., “Co-evolving Parallel Random Number Generators,” inProc. of the Parallel Problem Solving from Nature-PPSN IV, pp. 950–959, Springer-Verlag, 1996.

  34. Sipper, M. and Tomassini, M., “Generating Parallel Random Number Generators by Cellular Programming,”International Journal of Modern Physics C, pp. 181–190, 1996

  35. Spillman, R., Janssen, M., Nelson, B. and Kepner, M., “Use of a Genetic Algorithm in the Cryptanalysis of Simple Substitution Ciphers,”Cryptologia, XVII, 1, pp. 31–44, 1993.

    Article  Google Scholar 

  36. Spillman, R., “Cryptanalysis of Knapsack Ciphers Using Genetic Algorithms,”Cryptologia, XVII, 4, pp. 367–377, 1993.

    Article  Google Scholar 

  37. Wagner, D. and Bellovin, S.M., “A Programmable Plaintext Recognizer” (Unpublished manuscript), September 1994, http://www.cs.berkeley.edu/~daw/papers/recog.ps.

  38. Wolfram, S., “Random Sequence Generation by Cellular Automata,”Advances in Applied Mathematics, 7, 123, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  39. Wolfram, S., “Cryptography with Cellular Automata: Advances in Cryptology,”Crypto ’85 Proceedings, LNCS, 218, Springer-Verlag, pp. 429–432, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio César Hernández Castro.

About this article

Cite this article

Castro, J.C.H., Viñuela, P.I. Evolutionary Computation in computer security and cryptography. New Gener Comput 23, 193–199 (2005). https://doi.org/10.1007/BF03037654

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03037654

Navigation