Skip to main content
Log in

Ionic current in MOS structures

Courant Ionique dans les Structures MOS

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Abstract

A new approach of determining dynamic ionic current-voltage characteristic that is due to ion transport phenomenon in the oxide is presented. In this approach, the formulation of I–V characteristics ofmos device can be achieved through the use of the theoretical model of mobile ion distribution in oxides. The used theoretical model of ion distribution is based on the concept that the equilibrium concentration of the ions is obtained when the combined mobilizing forces, namely, thermal diffusion, internal, and external electric fields, become just sufficient to provide necessary activation energy to the ions to surmount the effective potential well. The obtained I–V curve is compared with the experimental curves under varying bias conditions by a slow linear ramp voltage at high temperature (tvs technique). An agreement between the experimental and computed curves provides a support to this method which in turn it gives formulation that is easier to apply for deriving the theoretical I–V characteristic.

Résumé

Une nouvelle approche est présentée pour déterminer un courant ionique dû au phénomène de transport d’ion dans l’oxyde. Dans cette approche, le calcul des caractéristiques I–V d’un dispositifmos est basé sur le modèle théorique de distribution d’ion dans des oxydes. Le modèle théorique employé est basé sur le fait que la concentration d’équilibre des ions est obtenue quand les forces combinées dues à la diffusion thermique, aux champs internes et externes électriques, deviennent suffisantes pour fournir l’énergie d’activation nécessaire aux ions pour surmonter le puits de potentiel efficace. La courbe d’ I–V calculée est comparée avec les courbes expérimentales dans des conditions de déplacement variantes en appliquant l’impulsion de tension de périodes différentes (la techniquetvs). La concordance entre les courbes expérimentales et celles calculées renforcent cette méthode qui permet, en retour, une formulation qui est plus facile à appliquer pour obtenir la caractéristique théorique I–V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamin (M.), Charge Storage Effects in Silicon Dioxide Films.ieeeTrans. Elect. Dev. (1965),ED-12, pp. 86–96.

    Google Scholar 

  2. Chou (N.J.), Application of Triangular voltage Sweep Method to Mobile Charge Studies inmos Structures,J. Electrochem. Soc. (1971),118, pp. 601–609.

    Article  Google Scholar 

  3. Przewlocki (H. M.),Marciniak (W.), The Triangular Voltage Sweep Method as a Tool in Studies of Mobile Charge inmos Structures.Phys. Stat. Sol. (1975), (a)29, pp. 265–274.

    Article  Google Scholar 

  4. Dmitriev (sg),Markin (Y.V), « Manifestations of the deneutralization of mobile charges in SiO2 in the spectroscopy of the silicon-oxide interface »,Semiconductors (1998),32, no 12, pp.1289–1292.

    Article  Google Scholar 

  5. Kuhn (M.),Silversmith (D. J.), Ionic Contamination and Transport of Mobile Ions inmos Structures,J. Electrochem. Soc. (1971),118, pp. 966–970.

    Article  Google Scholar 

  6. Romanov (V. P.),Chaplygin (Yu. A.), Stationary Distribution of mobile Charge in the Dielectric ofmos Structures,Phy. Stat. (1979), (a)53, pp. 493–498.

    Article  Google Scholar 

  7. Mitra (V.),Bentarzi (H.),Bouderbala (R.),Benfdila (A.), A Theoretical Model for the Density-Distribution of Mobile Ions in the Oxide of the Metal-Oxide-Semiconductor Structures,J. Appl. Phys (1993),73, pp.4287–4291.

    Article  Google Scholar 

  8. Hillen (M. W.),Verwey (J. F.), Mobile ions in SiO2 layers on Si. inBarbottain (G.) andVapaille (A.) ed.,Instabilities in Silicon Devices, vol.I, North-Holland, Amsterdam (1986), pp. 404–439.

    Google Scholar 

  9. Stagg (J.P.), Drift Mobility of Na+ and K+ Ions in SiO2 Films,Appl. Phys. Lett. (1977),31, pp. 532–533.

    Article  Google Scholar 

  10. Goldman (E.I.),Zhdan (A. G.),Chucheva (G.V.), Determination of the coefficients of ion transfer in insulating layers on the surface of semiconductors using dynamic current-voltage depolarization characteristics.Instruments and Experimental Techniques (1997),40, no 6, pp.841–846.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentarzi, H., Bouderbala, R. & Zerguerras, A. Ionic current in MOS structures. Ann. Télécommun. 59, 485–493 (2004). https://doi.org/10.1007/BF03179707

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179707

Key words

Mots clés

Navigation