Skip to main content

Advertisement

Log in

Advanced decoding algorithms for Reed-Solomon/Convolutional concatenated codes

Algorithmes de Décodage Avancés Pour Codes Concaténés Associant un Code Reed-Solomon et un Code Convolutif

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

The evaluation of the union bound for theber of Reed-Solomon/Convolutional concatenated codes indicates that their performance might largely improve through the application of soft iterative decoders. This paper presents an iterative decoding algorithm for concatenated codes consisting of an outer Reed-Solomon code, a symbol interleaver and an inner convolutional code. The performance improvement for iterative and non-iterative decoders is evaluated. Existing solutions for the different decoding stages and their interfaces are discussed and their performance is compared. A new procedure is proposed to define the feedback signal from the output of the Reed-Solomon decoder to the input of the convolutional decoder, which captures the reliability information that can be inferred from errors-and-era-suresrs decoders and includes the “state pinning” approach as a particular case. The decoding schemes are applied to the specificdvb-s concatenated code.

Résumé

L’évaluation de la borne d’union pour la probabilité d’erreur des codes concaténés comprenant un code Reed-Solomon externe et un code convolutif interne indique que la performance pourrait être largement améliorée si l’on appliquait du décodage itératif souple. Cet article présente un algorithme itératif pour le décodage des tels codes concaténés. L’amélioration dans les performances pour des décodeurs itératifs et non-itératifs est évaluée. Des solutions existantes pour les étapes de décodage et leurs interfaces sont analysées et leurs performances comparées. Une nouvelle procédure est proposée pour définir le signal de rétroaction de la sortie du décodeur Reed-Solomon vers l’entrée du décodeur convolutif. Ce signal porte l’information de fiabilité, laquelle peut être extraite des décodeursrs traitant erreurs et effacements. L’approche state-pinning en est un cas particulier. Les schémas de décodage sont appliqués au code concaténé de la normedvb-s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forney (G .D.),Concatenated codes, MIT Press, 1966.

  2. Berrou (C.),Glavieux (A.),Thitimajshima (P.), “Near Shannon limit error-correcting coding and decoding: turbo codes”,Proc. of IEEE Intl. Conf. on Communications 1993 (ICC’93), 1993, pp. 1064–1070.

  3. Hagenauer (J.),Offer (E.),Papke (L.), “Matching Viterbi decoders and Reed-Solomon decoders in a concatenated system”, Chapter 11 inReed-Solomon Codes and Their Applications, S. Wicker, V.K. Bhargava Ed., IEEE Press, 1994.

  4. Aitsab (O.),Pyndiah (R.), “Performance of a concatenated Reed-Solomon/Convolutional codes with iterative decoding”,Proc. of IEEE clobecom’97, 1997, pp. 934–938.

  5. Bajcsy (J.), Chong (C.), Garr (D.A.), Hunziker (J.), Kobayashi (H.), “On iterative decoding in some existing systems”,IEEE Journal on Selected Areas in Communications,19, no. 5, pp. 883–890, May 2001.

    Article  Google Scholar 

  6. etsi Standarden 300 421 “Digital Video Broadcasting (dvb); Framing Structure, Channel Coding and Modulation for 11/12 GHz Satellite Services”.

  7. Taipale (D.J.), Pursley (M.B.), “An improvement to generalized minimum distance decoding”,IEEE Trans. Inform. Theory,37, no. 1, pp. 167–172, January 1991.

    Article  MathSciNet  MATH  Google Scholar 

  8. Berlekamp (E.), “Bounded distance+1 soft-decision Reed-Solomon decoding”,IEEE Trans. Inform. Theory,42, no. 5, pp. 704–720, May 1996.

    Article  MATH  Google Scholar 

  9. Kötter (R.), Vardy (A.), “Algebraic Soft-Decision Decoding of Reed-Solomon Codes”,IEEE Trans. on Inf. Theory,49, no. 11, pp. 2809–2825, Nov. 2003.

    Article  Google Scholar 

  10. CCSDS Standard 101.0-B-6, “Telemetry Channel Coding” Blue Book, Issue 6, http://www.ccsds.org, October 2002.

  11. Sawaguchi (H.),Mita (S.),Wolf (J.K.), “Iterative decoding for concatenated error correction inprml channel systems”,Proc. of globecom’99, 1999, pp. 749–754.

  12. Benedetto (S.),Biglieri (E.),Principles of Digital Transmission with Wireless Applications, Kluwer Academic/Plenum Publishers, 1999.

  13. Retter (C.T.), “The Average Binary Weight-Enumerator for a Class of Generalized Reed-Solomon Codes”,IEEE Trans. On Information Theory,37, no. 2, pp. 346–349, March 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. Woodward (J.P.), Hanzo (L.), “Comparative study of turbo decoding techniques: An overview”,IEEE Trans. on Vehicular Technology,49, no. 6, pp. 2208–2233, Nov. 2000.

    Article  Google Scholar 

  15. Bahl (L.), Cocke (J.), Jelinek (F.), Raviv (J.), “Optimal decoding of linear codes for minimizing symbol error rate”,IEEE Trans. Inform.Theory,20, no. 2, pp. 284–287, March 1974.

    Article  MathSciNet  MATH  Google Scholar 

  16. Berkmann (J.), “On turbo decoding of nonbinary codes”,IEEE Communications Letters,2, no. 4, pp.94–96, April 1998.

    Article  Google Scholar 

  17. Hagenauer (J.),Hoeher (P.), “A Viterbi algorithm with soft-decision outputs and its applications”,Proc. of globecom’89, 1989, pp. 1680–1686.

  18. Kapur (J.N.),Kesavan (H.K.),Entropy Optimization Principles with Applications, Academic Press Inc., 1992.

  19. Hagenauer (J.),Offer (E.),Papke (L.), “Improving the standard coding system for deep space missions”,Proc. of IEEE Intl. Conf. on Communications 1993 (ICC’93), 1993, pp.1092–1097.

  20. Cooper iii (A.B.), “Soft-decision decoding of Reed-Solomon codes”, Chapter 6 inReed-Solomon Codes and Their Applications, S. Wicker, V.K. Bhargava Ed., IEEE Press, 1994.

  21. Honary (B.),Markarian (G.),Trellis decoding of block codes. A practical approach, Kluwer Academic Publ, 1997.

  22. Chase (D.), “A class of algorithms for decoding block codes with channel measurement information”,IEEE Trans. on Inform. Theory,18, no. 1, pp. 170–182, January 1972.

    Article  MathSciNet  MATH  Google Scholar 

  23. Guruswami (V.), Sudan (M.), “Improved decoding of Reed-Solomon codes for certain concatenated codes”,IEEE Trans. Inform.Theory,45, no. 6, pp. 1757–1767, Sept.1999.

    Article  MathSciNet  MATH  Google Scholar 

  24. Gross (W.J.),Kschischang (F.R.),Kötter (R.),Gulak (P.G.), “A VLSI Architecture for Interpolation in Soft-Decision List Decoding of Reed-Solomon Codes”,IEEE Workshop on Signal Processing Systems (SIPS ’02), 2002, pp. 39–44.

  25. Roth (R.M.), Ruckenstein (G.), “Efficient Decoding of Reed-Solomon Codes Beyond Half the Minimum Distance”,IEEE Trans, on Information Theory,46, no. 1, pp. 246–257, January 2000.

    Article  MathSciNet  MATH  Google Scholar 

  26. Forney (G.D.), “Generalized minimum distance decoding”,IEEE Trans. on Inform.Theory,12, no. 4, pp. 125–131, April 1966.

    Article  MathSciNet  MATH  Google Scholar 

  27. Benedetto (S.),Divsalar (D.),Montorsi (G.),Pollara (F.), “Soft-output decoding algorithms for continuous decoding of parallel concatenated convolutional codes”,Proc. of IEEE Intl. Conf. on Communications 1996 (ICC’96), 1996, pp. 112–117.

  28. Pyndiah (R.M.), “Near-optimum decoding of product codes: block turbo codes”,IEEE Trans. on Communications,46, no. 8, pp. 1003–1010, August 1998.

    Article  MATH  Google Scholar 

  29. Sweeney (P.), Wesemeyer (S.), “Iterative soft-decision decoding of linear block codes”,IEE Proceedings-Communications,147, no. 3, pp. 133–136, June 2000.

    Article  Google Scholar 

  30. Paaske (E.), “Improved decoding for a concatenated coding system recommended by CCSDS”,IEEE Trans. on Communications,38, no. 8, pp. 1138–1144, August 1990.

    Article  Google Scholar 

  31. Dolinar (S.),Belongie (M.), “Enhanced decoding for the Galileo S-band mission”,tda Progress Report, 42–114, August 1993.

  32. Collins (O.M.), Hizlan (M.), “Determinate-state convolutional codes”,IEEE Trans. on Communications,41, no. 2, pp. 1785–1794, December 1993.

    Article  MATH  Google Scholar 

  33. McEliece (R.J.), Swanson (L.), “On the decoder error probability for Reed-Solomon codes”,IEEE Trans. on Inf.Theory,32, no. 5, pp.701–703, Sep.1986.

    Article  MathSciNet  MATH  Google Scholar 

  34. Benedetto (S.),Divsalar (D.),Montorsi (G.),Pollara (F.), “A soft-input soft-output Maximum A Posteriori (map) module to decode parallel and serial concatenated codes”,jpl tda Progress Report, 42–126, August 1996.

  35. Garello (R.), Pierleoni (P.), Benedetto (S.), “Computing the Free Distance of Turbo Codes and Serially Concatenated Codes with Interleaves: Algorithms and Applications”,IEEE Journal on Selected Areas in Communications,19, no. 5, pp. 800–812, May 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the European Space Agency (ESA), European Research and Technology Centre (estec), in Noordwijk, The Netherlands.

This work has been partially financed by the European Space Agency (artes-1 program) and by the following research projects of the Spanish/Catalan Science and Technology Commissions (CICYT/CIRIT): TIC2003-05482, TIC2001-2356 and 2001SGR-00268.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamarca, M., Sala, J. & Martinez, A. Advanced decoding algorithms for Reed-Solomon/Convolutional concatenated codes. Ann. Télécommun. 60, 45–78 (2005). https://doi.org/10.1007/BF03219807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219807

Key words

Mots clés