Skip to main content
Log in

Time-invariant and switch-type hybrid iterative decoding of low-density parity-check codes

Décodage Itératif des Codes de Parité À Faible Densité par une Méthode Hybride À Invariance Dans Le Temps Ou À Basculement

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Hybrid decoding is to combine different iterative decoding algorithms with the aim of improving error performance or decoding complexity. This, e.g., can be performed by using a specific blend of different algorithms in every iteration (time-invariant hybrid: HTI), or by switching between different algorithms throughout the iteration process (switch-type hybrid: HST). In this work, we study HTI and HST algorithms both asymptotically, usingdensity-evolution, and at finite block lengths, using simulations, and show that these algorithms perform considerably better than their constituent algorithms. We also investigate the convergence properties of HTI and HST algorithms, under both the assumption of perfect knowledge of the channel, and the lack of it, and show that compared to HST algorithms, such as Gallager’s algorithm B, HTI algorithms are far less sensitive to channel conditions and thus can be practically more attractive.

Résumé

Le décodage hybride consiste à combiner différents algorithmes de décodage itératif avec pour but d’améliorer la performance en termes d’erreur et de complexité de décodage. Cela peut être réalisé, par exemple, en utilisant un mélange spécifique de différents algorithmes à chaque itération (hybride invariant dans le temps : HTI), ou en basculant entre différents algorithmes tout au long du processus itératif (hybride de type basculement: HST). Dans ce travail, nous étudions les algorithmes HTI et HST à la fois asymptotiquement, à travers l’évolution de densité, et pour des blocs de longueur finie, au travers de simulations, et nous montrons que ces algorithmes ont des performances considérablement supérieures à celles de leurs algorithmes constitutifs. Nous examinons également les propriétés de convergence des algorithmes HTI et HSJ dans des conditions de connaissance parfaite du canal d’une part et dans des conditions où les propriétés du canal sont inconnues d’autre part, et nous montrons que comparés aux algorithmes HST, tels que l’algorithme B de Gallager, les algorithmes HTl sont bien moins sensibles aux conditions du canal, et donc beaucoup plus attrayants d’un point de vue pratique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ardakani (M.),Kschischang (F. R.), Gear-shift decoding.Proc. 21 st Biennial Symp. Commun. (June 2002), Kingston, on, Canada, pp. 86–90.

  2. Banihashemi (A. H.),Nouh (A.),Zarrinkhat (P.), Hybrid (multistage) decoding of low-density parity-check (LDPC) codes.Proc. 40 th Allerton Conf. Commun., Control, and Computing, Allerton,il, usa, pp. 1437–1438, October 2002.

  3. Berrou (C.),Glavieux (A.),Thitimajshima (P.), Near Shannon limit error-correcting coding and decoding: Turbo-codes (I).Conf. Rec. Int’l Conf. Commun., pp. 1064–1070, May 1993.

  4. “Codes on graphs and iterative algorithms”,IEEE Trans. Inform. Theory,47, no 2, February 2001.

  5. Divsalar (D.),Dolinar (S.),Pollara (F), Low complexity turbo-like codes.Proc. 2 nd Int’l Symp. Turbo Codes & Related Topics, Brest, France, pp. 73–80, September 2000.

  6. El Gamal (H.), On the theory and applications of space-time and graph based codes. Ph.D. dissertation, Univ. Maryland, College Park, May 2000.

  7. Gallager (R. G.), Low-Density Parity-Check Codes. Cambridge, MA:MIT Press, 1963.

    Google Scholar 

  8. http://www.eetimes.com/semi/news/OEG20030505S0074

  9. Luby (M. G.), Mitzenmacher (M.), Shokrollahi (M. A.), Spielman (D. A.), Efficient erasure correcting codes,IEEE Trans. Inform. Theory,47, no 2, pp. 569–584, February 2001.

    Article  MathSciNet  MATH  Google Scholar 

  10. Luby (M. G.), Mitzenmacher (M.), Shokrollahi (M. A.), Spielman (D. A.), Improved low-density parity-check codes using irregular graphs.IEEE Trans. Inform. Theory,47, no 2, pp. 585–598, February 2001.

    Article  MathSciNet  MATH  Google Scholar 

  11. Mackay (D. J. C.),Neal (R. M.), Good codes based on very sparse matrices.Proc. 5 th IMA Conf. Crypto. Coding, pp. 100–111, December 1995.

  12. Margulis (G. A.), Explicit constructions of graphs without short cycles and low density codes,Combinatorica,2, no 1, pp. 71–78, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  13. Massey (J. L.), Threshold Decoding. Cambridge, MA: MITPress, 1963.

    Google Scholar 

  14. Richardson (T. J.), Shokrollahi (M. A.), Urbanke (R. L.), Design of capacity-approaching irregular low-density parity-check codes,IEEE Trans. Inform. Theory,47, no 2, pp. 619–637, February 2001.

    Article  MathSciNet  MATH  Google Scholar 

  15. Richardson (T. J.), Urbanke (R. L.), The capacity of low-density parity-check codes under message-passing decoding,IEEE Trans. Inform. Theory,47, no 2, pp. 599–618, February 2001.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sipser (M.),Spielman (D. A.), Expander codes.Proc. 35 th IEEE Symp. Found. Comp. Sci., pp. 566–576, November 1994.

  17. Tanner (R. M.), A recursive approach to low complexity codes,IEEE Trans. Inform. Theory,27, no 5, pp. 533–547, September 1981.

    Article  MathSciNet  MATH  Google Scholar 

  18. ten Brink (S.), Iterative decoding trajectories of parallel concatenated codes.Proc. 3 rd ieee/ITG Conf. Source and Channel Coding, Munich, Germany, pp. 75–80, January 2000.

  19. ten Brink (S.), Convergence behavior of iteratively decoded parallel concatenated codes,IEEE Trans. Commun.,49, pp.1727–1737, October 2001.

    Article  MATH  Google Scholar 

  20. “The turbo principle: from theory to practice”;IEEE J. Select. Areas Commun.,19, no 5, May 2001.

  21. “The turbo principle: from theory to practice”,IEEE J. Select. Areas Commun.,19, no 9, September 2001.

  22. Wiberg (N.), Loeliger (H. A.), Kotter (R.), Codes and iterative decoding on general graphs.Euro. Trans. Telecomm.,6, no 5, pp. 513–526, September 1995.

    Article  Google Scholar 

  23. Zarrinkhat (P.),Banihashemi (A. H.), Density-evolution and convergence properties of majority-based algorithms for decoding low-density parity-check (LDPC) codes.Proc. 40 th Allerton Conf. Commun., Control, and Computing, Allerton, IL, USA, pp. 1425–1434, October 2002.

  24. Zarrinkhat (P.),Banihashemi (A. H.), Dynamics of hybrid message-passing decoding algorithms for low-density parity-check codes.Proc. 3 rd Int’l Symp. Turbo Codes & Related Topics, Brest, France, pp. 503–506, September 2003.

  25. Zarrinkhat (P.), Banihashemi (A. H.), Hybrid hard-decision iterative decoding of regular low-density parity-check codes,IEEE Commun. Lett., 8, pp. 250–252, April 2004.

    Article  Google Scholar 

  26. Zarrinkhat (P.), Banihashemi (A. H.), Threshold values and convergence properties of majority-based algorithms for decoding regular low-density parity-check codes,IEEE Trans. Commun.,52, pp. 2087–2097, December 2004.

    Article  Google Scholar 

  27. Zigangirov (K. Sh.),Lentmaier (M.), On the asymptotic iterative decoding performance of low-density parity-check codes.Proc. 2 nd Int’l Symp. Turbo Codes & Related Topics, Brest, France, pp. 39–42, September 2000.

  28. Zyablov (V. V.), Pinsker (M. S.), Estimation of the error-correction complexity for Gallager low-density codes.Probl. Peredach. Inform.,11, no 1, pp. 23–26, January–March 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by an Ontario Graduate Scholarship (ogs).

Pirouz Zarrinkhat received the M.Sc. degree in electrical engineering in 1997 from Sharif University of Technology, Tehran, Iran. He is currently working towards the Ph.D. degree in the Department of Systems and Computer Engineering at Carleton University, Ottawa, ON, Canada.

Amir H. Banihashemi received the Ph.D. degree in electrical engineering in 1997 from University of Waterloo, Waterloo, ON, Canada. He is currently an Associate Professor in the Department of Systems and Computer Engineering at Carleton University, Ottawa, ON, Canada.

Hua Xiao received the M.Eng. degree in information and systems science from Carleton University, Ottawa, ON, Canada in 2002. He is currently working towards the Ph.D. in the Department of Systems and Computer Engineering, Carleton University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarrinkhat, P., Banihashemi, A.H. & Xiao, H. Time-invariant and switch-type hybrid iterative decoding of low-density parity-check codes. Ann. Télécommun. 60, 103–131 (2005). https://doi.org/10.1007/BF03219809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219809

Key words

Mots clés

Navigation