Abstract
In this paper we present a new framework, based on subdivision surface approximation, for efficient compression and coding of 3D models represented by polygonal meshes. Our algorithm fits the input 3D model with a piecewise smooth subdivision surface represented by a coarse control polyhedron, near optimal in terms of control points number and connectivity. Our algorithm, which remains independent of the connectivity of the input mesh, is particularly suited for meshes issued from mechanical or cad parts. The found subdivision control polyhedron is much more compact than the original mesh and visually represents the same shape after several subdivision steps, without artifacts or cracks, like traditional lossy compression schemes. This control polyhedron is then encoded specifically to give the final compressed stream. Experiments conducted on several cad models have proven the coherency and the efficiency of our algorithm, compared with existing methods.
Résumé
Nous présentons dans cet article, une approche, basée sur une approximation par surfaces de subdivision, pour la compression et le codage de modèles 3D représentés par des maillages polygonaux. Notre algorithme approxime le modèle 3D par une surface de subdivision lisse par morceaux, représentée par un polyèdre de contrôle grossier optimisé en termes de nombre de points de contrôle et de connectivité. Notre algorithme, qui est indépendant de la connectivité du maillage d’origine, est particulièrement adapté aux maillages issus de pièces mécaniques ouCao. Le polyèdre de contrôle obtenu est beaucoup plus compact que le maillage d’origine et représente visuellement la même forme après plusieurs itérations de subdivision, sans artefacts ou discontinuités comme celles introduites par la plupart des méthodes de compression avec pertes. Ce polyèdre de contrôle est ensuite codé spécifiquement pour donner le flux comprimé final. Des expériences menées sur plusieurs modèlesCao ont prouvé la cohérence et l’efficacité de notre algorithme en comparaison d’autres méthodes existantes.
Similar content being viewed by others
References
Touma (C),Gotsman (C), Triangle mesh compression,Graphic Interfaces, pp. 26–34, 1998.
Gumhold (S.),Strasser (W.), Real time compression of triangle mesh connectivity,Acm Siggraph, pp. 133–140, 1998.
Isenburg (M.),Snoeyink (J.), Face Fixer: Compressing Polygon Meshes with Properties,Acm Siggraph, pp. 263–270, 2001.
Khodakovsky (A.),Schroder (P.),Sweldens (W.), Progressive Geometry Compression,Acm Siggraph, pp. 271–278, 2000.
Valette (S.), Prost (R.), A Wavelet-Based Progressive Compression Scheme For Triangle Meshes: Wavemesh,IEEE Transactions on Visualization and Computer Graphics,10, no 2, p. 123–129, 2004.
Mpeg4,Iso/iec 14496-16. Coding of Audio-Visual Objects: Animation Framework extension (Afx), 2002.
Alliez (P.),Gotsman (C.), Recent advances in compression of 3D meshes;Advances in Multiresolution for Geometric Modelling, N. Dodgson, M. Floater and M. Sabin, pp. 3–26. Springer-Verlag. 2005.
Alliez (P.),Desbrun (M.), Progressive Encoding for Lossless Transmission of 3D Meshes,Acm Siggraph, pp. 198–205, 2001.
Karni (Z.),Gotsman (C), Spectral compression of mesh geometry,Acm Siggraph pp. 279–286, 2000.
Lee (A.),Moreton (H.),Hoppe (H.), Displaced subdivision surfaces,Acm Siggraph, pp. 85–94, 2002.
Ma (W.), Ma (X.), Tso (S.), Pan (Z.), A direct approach for subdivision surface fitting from a dense triangle mesh,Computer Aided Design,36, no 6, p. 525–536, 2004.
Mongkolnam (P.), Razdan (A.), Farin (G.), Reverse Engineering Using Loop Subdivision,Computer-Aided Design & Applications,1, pp. 619–626, 2004.
Garland (M.),Heckbert (P.), Surface simplification using quadric error metrics,Acm Siggraph, pp. 209–216, 1997.
Kanai (T.), Meshtoss: Converting subdivision surfaces from dense meshes,Vision, Modeling and Visualization, pp. 325–332, 2001.
Suzuki (H.),Takeuchi (S.),Kimura (F.),Kanai (T.), Subdivision surface fitting to a range of points,IEEE Pacific graphics, pp. 158–167, 1999.
Jeong (W.), Kim (C.), Direct reconstruction of displaced subdivision surface from unorganized points,Journal of Graphical Models,64, no 2, pp. 78–93, 2002.
Hoppe (H.),Derose (T.),Duchamp (T.),Halstead (M.),Jin (H.),Mcdonald (J.),Schweitzer (J.),Stuetzle (W.), Piecewise smooth surface reconstruction,Acm Siggraph, pp. 295–302, 1994.
Pottmann (H.), Leopoldseder (S.), A concept for parametric surface fitting which avoids the parametrization problem,Computer Aided Geometric Design,20, no 6, pp. 343–362, 2003.
Doo (D.), Sabin (M.), Behavior of recursive subdivision surfaces near extraordinary points,Computer Aided Design,10, pp. 356–360, 1978.
Catmull (E.), Clark (J.), Recursively generated b-spline surfaces on arbitrary topological meshes,Computer-Aided Design,10, no 6, pp. 350–355, 1978.
Farin (G.),Curves and Surfaces for Computer Aided Geometric Design, Academic Press, 1996.
Kobbelt (L.), Interpolatory subdivision on open quadrilateral nets with arbitrary topology,Computer Graphics Forum,15, no 3, pp. 409–120, 1996.
Loop (C), Smooth subdivision surfaces based on triangles,Master’s thesis, Utah University, 1987.
Dyn (N.), Levin (D.), Gregory (A.), A butterfly subdivision scheme for surface interpolation with tension control,Acm Transactions on Graphics,9, no 2, pp. 160–169, 1990.
Stam (J.), Loop (C), Quad/triangle subdivision,Computer Graphics Forum,22, no 1, p. 79–85, 2003.
Hoschek (J.), Intrinsic parametrization for approximation,Computer Aided Geometric Design,5, no 1, pp. 17–31, 1988.
Speer (T.), Kuppe (M.), Hoschek( J.), Global reparametrization for curve approximation,Computer Aided Geometric Design,15, no 9, pp. 869–877, 1998.
Saux (E.), Daniel (M.), Data reduction of polygonal curves using B-Splines,Computer-Aided Design,31, no8, pp. 507–515, 1999.
Saux (E.), Daniel (M.), An improved hoschek intrinsic parametrization,Computer Aided Geometric Design,20, no 8/9, pp. 513–521, 2003.
Ma (W.), Kruth (J.), Parametrization of randomly measured points for the least squares fitting of b-spline curves and surfaces,Computer Aided Design,27, no 9, pp. 663–675, 1995.
Rogers (D.), Fog (N.), Constrained B-spline curve and surface fitting,Computer Aided Geometric Design,21, no 10, pp. 641–648, 1989.
Krishnamurthy (V.),Levoy (M.), Fitting smooth surfaces to dense polygon meshes,Acm Siggraph, pp. 313–324, 1996.
Forsey (D.), Bartels (R.), Surface fitting with hierarchical splines,Acm Transactions on Graphics,14, no 2, pp. 134–161, 1995.
Yang (H.), Wang (W.), Sun (J.), Control point adjustment for B-spline curve approximation,Computer-Aided Design,36, no 7, pp. 539–552, 2004.
Lavoue (G.), Dupont (F.), Baskurt (A.), A new CAD mesh segmentation method, based on curvature tensor analysis,Computer-Aided Design,37, no 10, pp. 975–987, 2005.
Cohen-Steiner (D.),Morvan (J.), Restricted delaunay triangulations and normal cycle,Acm Sympos. Computational Geometry, pp. 237–246, 2003.
Alliez, (P.), Cohen-Steiner (D.), Devillers (O.), Levy (B.), Desbrun (M.), Anisotropic Polygonal Remeshing,Acm Transactions on Graphics,22, no 3, pp. 485–493, 2003.
Lavoue (G.), Dupont (F.), Baskurt (A.), A new subdivision based approach for piecewise smooth approximation of 3D polygonal curves,Pattern Recognition,38, no 8, pp. 1139–1151, 2005.
Lavoue (G.),Dupont (F.),Baskurt (A.), Toward a near optimal quad/triangle subdivision surface fitting,IEEE 3-D Digital Imaging and Modeling, pp. 402–409, 2005.
Hertel (S.), Mehlhorn (K.), Fast triangulation of simple polygons, InternationalFct-Conference on Fundamentals of Computation Theory,158, pp. 207–218, 1983.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lavoué, G., Dupont, F. & Baskurt, A. High rate compression of CAD meshes based on subdivision inversion. Ann. Télécommun. 60, 1284–1308 (2005). https://doi.org/10.1007/BF03219850
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF03219850
Key words
- Computer aided design
- Three dimensional model
- Information compression
- Grid pattern
- Polygon
- Visualization
- Approximation
- Surface