Skip to main content
Log in

High rate compression of CAD meshes based on subdivision inversion

Compression de Maillages Cao Basée sur la Subdivision Inverse

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

In this paper we present a new framework, based on subdivision surface approximation, for efficient compression and coding of 3D models represented by polygonal meshes. Our algorithm fits the input 3D model with a piecewise smooth subdivision surface represented by a coarse control polyhedron, near optimal in terms of control points number and connectivity. Our algorithm, which remains independent of the connectivity of the input mesh, is particularly suited for meshes issued from mechanical or cad parts. The found subdivision control polyhedron is much more compact than the original mesh and visually represents the same shape after several subdivision steps, without artifacts or cracks, like traditional lossy compression schemes. This control polyhedron is then encoded specifically to give the final compressed stream. Experiments conducted on several cad models have proven the coherency and the efficiency of our algorithm, compared with existing methods.

Résumé

Nous présentons dans cet article, une approche, basée sur une approximation par surfaces de subdivision, pour la compression et le codage de modèles 3D représentés par des maillages polygonaux. Notre algorithme approxime le modèle 3D par une surface de subdivision lisse par morceaux, représentée par un polyèdre de contrôle grossier optimisé en termes de nombre de points de contrôle et de connectivité. Notre algorithme, qui est indépendant de la connectivité du maillage d’origine, est particulièrement adapté aux maillages issus de pièces mécaniques ouCao. Le polyèdre de contrôle obtenu est beaucoup plus compact que le maillage d’origine et représente visuellement la même forme après plusieurs itérations de subdivision, sans artefacts ou discontinuités comme celles introduites par la plupart des méthodes de compression avec pertes. Ce polyèdre de contrôle est ensuite codé spécifiquement pour donner le flux comprimé final. Des expériences menées sur plusieurs modèlesCao ont prouvé la cohérence et l’efficacité de notre algorithme en comparaison d’autres méthodes existantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Touma (C),Gotsman (C), Triangle mesh compression,Graphic Interfaces, pp. 26–34, 1998.

  2. Gumhold (S.),Strasser (W.), Real time compression of triangle mesh connectivity,Acm Siggraph, pp. 133–140, 1998.

  3. Isenburg (M.),Snoeyink (J.), Face Fixer: Compressing Polygon Meshes with Properties,Acm Siggraph, pp. 263–270, 2001.

  4. Khodakovsky (A.),Schroder (P.),Sweldens (W.), Progressive Geometry Compression,Acm Siggraph, pp. 271–278, 2000.

  5. Valette (S.), Prost (R.), A Wavelet-Based Progressive Compression Scheme For Triangle Meshes: Wavemesh,IEEE Transactions on Visualization and Computer Graphics,10, no 2, p. 123–129, 2004.

    Article  Google Scholar 

  6. Mpeg4,Iso/iec 14496-16. Coding of Audio-Visual Objects: Animation Framework extension (Afx), 2002.

  7. Alliez (P.),Gotsman (C.), Recent advances in compression of 3D meshes;Advances in Multiresolution for Geometric Modelling, N. Dodgson, M. Floater and M. Sabin, pp. 3–26. Springer-Verlag. 2005.

  8. Alliez (P.),Desbrun (M.), Progressive Encoding for Lossless Transmission of 3D Meshes,Acm Siggraph, pp. 198–205, 2001.

  9. Karni (Z.),Gotsman (C), Spectral compression of mesh geometry,Acm Siggraph pp. 279–286, 2000.

  10. Lee (A.),Moreton (H.),Hoppe (H.), Displaced subdivision surfaces,Acm Siggraph, pp. 85–94, 2002.

  11. Ma (W.), Ma (X.), Tso (S.), Pan (Z.), A direct approach for subdivision surface fitting from a dense triangle mesh,Computer Aided Design,36, no 6, p. 525–536, 2004.

    Article  Google Scholar 

  12. Mongkolnam (P.), Razdan (A.), Farin (G.), Reverse Engineering Using Loop Subdivision,Computer-Aided Design & Applications,1, pp. 619–626, 2004.

    Google Scholar 

  13. Garland (M.),Heckbert (P.), Surface simplification using quadric error metrics,Acm Siggraph, pp. 209–216, 1997.

  14. Kanai (T.), Meshtoss: Converting subdivision surfaces from dense meshes,Vision, Modeling and Visualization, pp. 325–332, 2001.

  15. Suzuki (H.),Takeuchi (S.),Kimura (F.),Kanai (T.), Subdivision surface fitting to a range of points,IEEE Pacific graphics, pp. 158–167, 1999.

  16. Jeong (W.), Kim (C.), Direct reconstruction of displaced subdivision surface from unorganized points,Journal of Graphical Models,64, no 2, pp. 78–93, 2002.

    Article  MATH  Google Scholar 

  17. Hoppe (H.),Derose (T.),Duchamp (T.),Halstead (M.),Jin (H.),Mcdonald (J.),Schweitzer (J.),Stuetzle (W.), Piecewise smooth surface reconstruction,Acm Siggraph, pp. 295–302, 1994.

  18. Pottmann (H.), Leopoldseder (S.), A concept for parametric surface fitting which avoids the parametrization problem,Computer Aided Geometric Design,20, no 6, pp. 343–362, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  19. Doo (D.), Sabin (M.), Behavior of recursive subdivision surfaces near extraordinary points,Computer Aided Design,10, pp. 356–360, 1978.

    Article  Google Scholar 

  20. Catmull (E.), Clark (J.), Recursively generated b-spline surfaces on arbitrary topological meshes,Computer-Aided Design,10, no 6, pp. 350–355, 1978.

    Article  Google Scholar 

  21. Farin (G.),Curves and Surfaces for Computer Aided Geometric Design, Academic Press, 1996.

  22. Kobbelt (L.), Interpolatory subdivision on open quadrilateral nets with arbitrary topology,Computer Graphics Forum,15, no 3, pp. 409–120, 1996.

    Article  Google Scholar 

  23. Loop (C), Smooth subdivision surfaces based on triangles,Master’s thesis, Utah University, 1987.

  24. Dyn (N.), Levin (D.), Gregory (A.), A butterfly subdivision scheme for surface interpolation with tension control,Acm Transactions on Graphics,9, no 2, pp. 160–169, 1990.

    Article  MATH  Google Scholar 

  25. Stam (J.), Loop (C), Quad/triangle subdivision,Computer Graphics Forum,22, no 1, p. 79–85, 2003.

    Article  Google Scholar 

  26. Hoschek (J.), Intrinsic parametrization for approximation,Computer Aided Geometric Design,5, no 1, pp. 17–31, 1988.

    Google Scholar 

  27. Speer (T.), Kuppe (M.), Hoschek( J.), Global reparametrization for curve approximation,Computer Aided Geometric Design,15, no 9, pp. 869–877, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  28. Saux (E.), Daniel (M.), Data reduction of polygonal curves using B-Splines,Computer-Aided Design,31, no8, pp. 507–515, 1999.

    Article  MATH  Google Scholar 

  29. Saux (E.), Daniel (M.), An improved hoschek intrinsic parametrization,Computer Aided Geometric Design,20, no 8/9, pp. 513–521, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma (W.), Kruth (J.), Parametrization of randomly measured points for the least squares fitting of b-spline curves and surfaces,Computer Aided Design,27, no 9, pp. 663–675, 1995.

    Article  MATH  Google Scholar 

  31. Rogers (D.), Fog (N.), Constrained B-spline curve and surface fitting,Computer Aided Geometric Design,21, no 10, pp. 641–648, 1989.

    MATH  Google Scholar 

  32. Krishnamurthy (V.),Levoy (M.), Fitting smooth surfaces to dense polygon meshes,Acm Siggraph, pp. 313–324, 1996.

  33. Forsey (D.), Bartels (R.), Surface fitting with hierarchical splines,Acm Transactions on Graphics,14, no 2, pp. 134–161, 1995.

    Article  Google Scholar 

  34. Yang (H.), Wang (W.), Sun (J.), Control point adjustment for B-spline curve approximation,Computer-Aided Design,36, no 7, pp. 539–552, 2004.

    Article  Google Scholar 

  35. Lavoue (G.), Dupont (F.), Baskurt (A.), A new CAD mesh segmentation method, based on curvature tensor analysis,Computer-Aided Design,37, no 10, pp. 975–987, 2005.

    Article  Google Scholar 

  36. Cohen-Steiner (D.),Morvan (J.), Restricted delaunay triangulations and normal cycle,Acm Sympos. Computational Geometry, pp. 237–246, 2003.

  37. Alliez, (P.), Cohen-Steiner (D.), Devillers (O.), Levy (B.), Desbrun (M.), Anisotropic Polygonal Remeshing,Acm Transactions on Graphics,22, no 3, pp. 485–493, 2003.

    Article  Google Scholar 

  38. Lavoue (G.), Dupont (F.), Baskurt (A.), A new subdivision based approach for piecewise smooth approximation of 3D polygonal curves,Pattern Recognition,38, no 8, pp. 1139–1151, 2005.

    Article  MATH  Google Scholar 

  39. Lavoue (G.),Dupont (F.),Baskurt (A.), Toward a near optimal quad/triangle subdivision surface fitting,IEEE 3-D Digital Imaging and Modeling, pp. 402–409, 2005.

  40. Hertel (S.), Mehlhorn (K.), Fast triangulation of simple polygons, InternationalFct-Conference on Fundamentals of Computation Theory,158, pp. 207–218, 1983.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavoué, G., Dupont, F. & Baskurt, A. High rate compression of CAD meshes based on subdivision inversion. Ann. Télécommun. 60, 1284–1308 (2005). https://doi.org/10.1007/BF03219850

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219850

Key words

Mots clés

Navigation