Skip to main content
Log in

Yield and reliability issues in nanoelectronic technologies

Rendement et Fiabilité dans les Technologies Nanoélectroniques

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Integrated circuits have known a constant evolution in the last decades, with increases in density and speed that follow the rates predicted in Moore’s law. The tradeoffs in area, speed and power, allowed by theCmos technology, and its capacity to integrate analog, digital and mixed components, are key features to its dissemination in the telecommunications field. In fact, the progress of theCmos technology is an important driver for telecommunications evolution, with the continuous integration of complex functions needed by demanding applications. As integrated circuits evolve, they approach some limits that make further improvements more difficult and even unpredictable. With deep-submicron structures, the yield of manufacturing processes is one of the main challenges of the semiconductor industry, with negative impacts on time-to-market and profitability. With reduced voltages and increased speed and density, the reliability of deep-submicron circuits is another concern for designers, since noise immunity is reduced and thermal noise effects show-up. In this paper we present an overview of the issues related with the scaling of integrated circuits into nanometer technologies, detailing the yield and reliability problems. We present the state of the art in proposed solutions and alternatives that can improve the chances of a large utilization of these nanotechnologies.

Résumé

Les circuits intégrés ont connu une évolution constante au cours des dernières décennies, avec des améliorations en densité et en vitesse qui suivent les variations prévues par la loi de Moore. Les possibilités offertes par la technologieCmos d’échanges entre surface, vitesse et puissance ainsi que d’intégration de composants analogiques, numériques et mixtes sont la raison principale de la large diffusion de cette technologie dans le domaine des télécommunications. En effet, les progrès de la technologieCmos ont contribué à l’évolution de ce domaine, par l’intégration de fonctions de plus en plus complexes, diverses et demandeuses de puissance de calcul. Néanmoins, plus les circuits intégrés évoluent, plus ceux-ci approchent certaines limites rendant de nouvelles améliorations plus difficiles voire impossibles ou tout au moins imprévisibles. Le rendement des procédés de fabrication employant des structures fortement submicroniques est l’un des défis majeurs de l’industrie des semiconducteurs, du fait de son impact négatif sur le délai de mise sur le marché et la rentabilité. Par ailleurs, la réduction des tensions, l’augmentation des fréquences et l’accroissement de la densité d’intégration font de la fiabilité des circuits fortement submicroniques un autre défi pour les concepteurs, puisque l’immunité au bruit est de ce fait réduite et que les effets du bruit thermique augmentent. Dans cet article, nous établissons un panorama des questions liées à l’arrivée des circuits intégrés en technologies nanométriques en nous intéressant tout particulièrement aux problèmes de rendement et de fiabilité. Nous présentons l’état de l’art des solutions proposées et proposons quelques pistes alternatives qui permettraient de lever les verrous à l’utilisation plus large de ces technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gea-Banacloche (J.), Kish (L.B.), Future directions in electronic computing and information processing.Proceedings of the IEEE,93(10), pp. 1858–1863, Oct. 2005.

    Article  Google Scholar 

  2. Skotnicki (T.), Hutchby (J.A.), King (T.-J.), Wong (H.-S.P.), BŒuf (F.), The end ofCmos scaling: toward the introduction of new materials and structural changes to improveMosfet performance.,IEEE Circuits and Devices Magazine,21(1), pp. 16–26, Jan.–Feb. 2005.

    Article  Google Scholar 

  3. Itrs, International technology roadmap for semiconductors. http://www.itrs.net/, Dec. 2005.

  4. Bourianoff (G.I.), The future of nanocomputing.IEEE Computer,36(8), pp. 44–53, Aug. 2003.

    Google Scholar 

  5. Lebeau (D.), Aperçu de la recherche sur les nanotechnologies. Conseil de la science et de la technologie — Québec, http://www.cst.gouv.qc.ca/, 2001.

  6. Stan (M.R.), Franzon (P.D.), Goldstein (S.C.), Lach (J.C.), Ziegler (M.M.), Molecular electronics: from devices and interconnect to circuits and architectures.Proceedings of the IEEE,91(11), pp. 1940–1957, Nov. 2003.

    Article  Google Scholar 

  7. Breuer (M. A.), Gupta (S.K.), Mak (T. M.), Defect and error tolerance in the presence of massive numbers of defects.IEEE Design & Test of Computers,21(3), pp. 130–139, May–Jun. 2004.

    Article  Google Scholar 

  8. Anghel (L.), Les limites technologiques du silicium et tolérance aux fautes.PhD thesis, Laboratoire Techniques de l’Informatique et de la Microélectronique pour l’Architecture de l’Ordinateur (Tima), Dec. 2000.

  9. Kastensmidt (F. G. de L.), Neuberger (G.), Hentschke (R.F.), Carro (L.), Reis (R.), Designing fault-tolerant techniques forSram-basedFpga’s.Design & Test of Computers,21(6), pp. 552–562, Nov–Dec. 2004.

    Article  Google Scholar 

  10. Kish (L.B.), End of Moore’s law: thermal (noise) death of integration in micro and nano electronics.Physics Letters A,305(3–4), pp. 144–149, Dec. 2002.

    Article  Google Scholar 

  11. Baumann (R.), The impact of technology scaling on soft error rate performance and limits to the efficacy of error correction. Digest of the International Electron Devices Meeting —Iedm’02, pp. 329–332, Dec. 2002.

  12. Bahar (R.I.), Tahoori (M. B.), Shukla (S.K.), Lombardi (F.), Guest editor’s introduction: challenges for reliable design at the nanoscale.IEEE Design & Test of Computers,22(4), pp. 295–297, Jul.–Aug. 2005.

    Article  Google Scholar 

  13. Edenfeld (D.), Kahng (A.B.), Rodgers (M.), Zorian (Y.), 2003 technology roadmap for semiconductors.IEEE Computer,37(1), pp. 47–56, Jan. 2004.

    Google Scholar 

  14. Heath (J. R.), Kuekes (P. J.), Snider (G. S.), Williams (R. S.), A defect-tolerant computer architecture: opportunities for nanotechnology.Science,280(5370), pp. 1716–1721, Jun 1998.

    Article  Google Scholar 

  15. Dehon (A.), Naeimi (H.), Seven strategies for tolerating highly defective fabrication.IEEE Design & Test of Computers,22(04), pp. 306–315, Jul.–Aug. 2005.

    Article  Google Scholar 

  16. Nikolic (K.),Sadek (A.),Forshaw (M.), Architectures for reliable computing with unreliable nanodevices. Proceedings of the 2001 1st IEEE Conference on Nanotechnology —Ieee-nano 2001, pp. 254–259, Oct. 2001.

  17. Lysaght (P.), Subrahmanyam (P.A.), Guest editor’s introduction: advances in configurable computing.IEEE Design & Test of Computers,22(2), pp. 85–89, Mar.–Apr. 2005.

    Article  Google Scholar 

  18. Mollick (E.), Establishing Moore’s Law.IEEE Annals of the History of Computing,28(3), pp. 62–75, Jul.–Sep. 2006.

    Article  MathSciNet  Google Scholar 

  19. Taur (Y.), Buchanan (D.A.), Chen (W.), Frank (D.J.), Ismail (K.E.), Lo (S.-H.), Sai-halasz (G.A.), Viswanathan (R.G.), Wann (H.-J.C.), Wind (S.J.), Wong (H.-S.), Cmos scaling into the nanometer regime.Proceedings of the IEEE 85(4), pp. 486–504, Apr. 1997.

    Article  Google Scholar 

  20. Gargini (P.A.), The global route to future semiconductor technology.IEEE Circuits and Devices Magazine,18(2), pp. 13–17, Mar. 2002.

    Article  Google Scholar 

  21. Allan (A.), Edenfeld (D.), Joyner (W.H.) Jr,Kahng (A.B.), Rodgers (M.), Zorian (Y.), 2001 technology roadmap for semiconductors.IEEE Computer,35(1), pp. 42–53, Jan. 2002.

    Google Scholar 

  22. Melari, Technology roadmap for nanoelectronics — edition 1999. Microelectronics Advanced Research Initiative —Melari nano, ftp://ftp.cordis.lu/pub/esprit/docs/melnarm.pdf, 1999.

  23. Hutchby (J. A.), Bourianoff (J. I.), Zhirnov (V. V.), Brewer (J.E.), Extending the road beyondCmos.IEEE Circuits & Devices Magazine,18(2), pp. 28–41, Mar. 2002.

    Article  Google Scholar 

  24. Teo (K.B.K.), Lacerda (R.G.), Yang (M.H.), The (A.S.), Robinson (L.A.W), Dala (S.H.), Rupesinghe (N.L.), Chhowalla (M.), Lee (S. B.), Jefferson (D.A.), Hasko (D. G.), Amaratunga (G.A.J.), Milne (W.L.), Legagneux (P.), Gangloff (L.), Minoux (E.), Schnell (J. P.), Pribat (D.), Carbon nanotube technology for solid state and vacuum electronics.Circuits, Devices and Systems, IEEE Proceedings,151(5), pp. 443–451, Oct. 2004.

    Article  Google Scholar 

  25. Zhirnov (V.V.), Hutchby (J.A.), Bourianoff (G.I.), Brewer (J.E.), Emerging research logic devices.IEEE Circuits & Devices Magazine,21(3), pp. 37–46, May–Jun. 2005.

    Article  Google Scholar 

  26. Bohr (M.T.), Nanotechnology goals and challenges for electronic applications.IEEE Transactions on Nanotechnology,1(1), pp. 56–62, Mar. 2002.

    Article  MathSciNet  Google Scholar 

  27. Hutchby (J.A.), Bourianoff (G.I.), Zhirnov (V. V.), Brewer (J. E.), Emerging research memory and logic technologies.IEEE Circuits & Devices Magazine,21(3), pp. 47–51, May–Jun. 2005.

    Article  Google Scholar 

  28. Levitt (M.), The role of design in enhancing nanometer process yield. International Engineering Consortium Newsletter, http://www.iec.org/newsletter/jan06_1/design_1.html, Jan. 2006.

  29. Sirisantana (N.), Paul (B.C.), Roy (K.), Enhancing yield at the end of the technology roadmap.IEEE Design & Test of Computers,21(6), pp. 563–571, Nov.–Dec. 2004.

    Article  Google Scholar 

  30. Zorian (Y.), Gizopoulos (D.), Guest editor’s introduction: design for yield and reliability.IEEE Design & Test of Computers,21(3), pp. 177–182, May–Jun. 2004.

    Article  Google Scholar 

  31. Miller (M.), Manufacturing-aware design helps boost IC yield.EETimes website, http://www.eetimes.com/.

  32. Horgan (J.), Design for manufacturability (Dfm).Eda Café website, http://www.edacafe.com/.

  33. Zorian (Y.), Nanoscale design & test challenges,IEEE Computer,38(2), pp. 36–39, Feb. 2005.

    Google Scholar 

  34. Constantinescu (C.), Trends and challenges inVlsi circuit reliability.IEEE Micro,23(4), pp. 14–19, Jul.–Aug. 2003.

    Article  Google Scholar 

  35. Baumann (R.), Soft errors in advanced computer systems.IEEE Design & Test of Computers,22(3), pp. 258–266, May–Jun. 2005.

    Article  Google Scholar 

  36. Nicolaidis (M.), Design for soft error mitigation.IEEE Transactions on Device and Materials Reliability,5(3), pp. 405–418, Sep. 2005.

    Article  Google Scholar 

  37. Lisbôa (C. A. L.),Carro (L.),Cota (E.), RobOps — arithmetic operators for future technologies.Informal Proceedings of 10th IEEE European Test Symposium, May 2005.

  38. Goldstein (S.C.),Budiu (M.), NanoFabrics: spatial computing using molecular electronics.Proceedings of the 28th International Symposium on Computer Architecture, pp. 178–189, Jun. 2001.

  39. Mishra (M.),Goldstein (S. C.), Defect tolerance at the end of the roadmap. Proceedings of the International Test Conference —Itc 2003, pp. 1201–1210, Sep. 2003.

  40. Ziegler (M.M.), Stan (M.R.), Cmos/nano co-design for crossbar-based molecular electronic systems.IEEE Transactions on Nanotechnology,2(4), pp. 217–230, Dec. 2003.

    Article  Google Scholar 

  41. Hogg (T.), Snider (G. S.), Defect-tolerant adder circuits with nanoscale crossbars.IEEE Transactions on Nanotechnology,5(2), pp. 97–100, Mar. 2006.

    Article  Google Scholar 

  42. Lee (M.-H.), Kim (Y. K.), Choi (Y.-H.), A defect-tolerant memory architecture for molecular electronics.IEEE Transactions on Nanotechnology,3(1), pp. 152–157, Mar. 2004.

    Article  Google Scholar 

  43. He (C.), Jacome (M.F.), de Veciana (G.), A reconfiguration-based defect-tolerant design paradigm for nano-technologies.IEEE Design & Test of Computers,22(4), pp. 316–326, Jul.–Aug. 2005.

    Article  Google Scholar 

  44. Tour (J. M.), van Zandt (W.L.), Husband (C.P.), Husband (S.M.), Wilson (L.S.), Franzon (P.D.), Nackashi (D.P.), Nanocell logic gates for molecular computing.IEEE Transactions on Nanotechnology,1(2), pp. 100–109, Jun. 2002.

    Article  Google Scholar 

  45. Husband (C.P.), Husband (S.M.), Daniels (J.S.), Tour (J.M.), Logic and memory with nanocell Cirits.IEEE Transactions on Electron Devices,50(9), pp. 1865–1875, Sep. 2003.

    Article  Google Scholar 

  46. Likharev (K. K.), Neuromorphic CMOL circuits.Third IEEE Conference on Nanotechnology — IEEE 2003,2, pp. 339–342, Aug. 2003.

    Article  Google Scholar 

  47. Türel (Ö.),Lee (J.H.),Ma (X.),Likharev (K. K.), Nanoelectronic neuromorphic networks (CrossNets): new results. International Joint Conference on Neural Networks 2004 —Ijcnn 2004, pp. 389–394, Jul. 2004.

  48. Mitra (S.), Huang (W.-J.), Saxena (N.R.), Yu (S.-Y.), McCluskey (E.J.), Reconfigurable architecture for autonomous self-repair.IEEE Design & test of Computers,21(3), pp. 228–240, May–Jun. 2004.

    Article  Google Scholar 

  49. Breuer (M. A.), Intelligible test techniques to support error tolerance.13th Asian Test Symposium, pp. 386–393, Nov. 2004.

  50. Spica (M.),Mak (T.M.), Do we need anything more than single bit error correction (Ecc)?. Records of the 2004 International Workshop on Memory Technology, Design and Testing —Mtdt’04, pp. 111–116, Aug. 2004.

  51. Hadjicostis (C.N.), Coding approaches to fault tolerance in combinational and dynamic systems.Kluwer Academic Publishers, London, 2002

    Book  MATH  Google Scholar 

  52. Mitra (S.),McCluskey (E.J.), Which concurrent error detection scheme to choose?.Proceedings of the International Test Conference, pp. 985–994, Oct. 2000.

  53. Lala (P. K.),Walker (A.), On-line error detectable carry-free adder design.Proceedings of the 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 66–71, Oct. 2001.

  54. Parhami (B.), Approach to the design of parity-checked arithmetic circuits.Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers,2, pp. 1084–1088, Nov. 2002.

    Article  Google Scholar 

  55. Cardarilli (G. C.),Ottavi (M.),Pontarelli (S.),Re (M.),Salsano (A.), A signed digit adder with error correction and graceful degradation capabilities. Proceedings of the 10th IEEE International On-Line Testing Symposium —Iolts 2004, pp. 141–146, Jul. 2004.

  56. Han (J.), Jonker (P.), A system architecture solution for unreliable nanoelectronic devices.IEEE Transactions on Nanotechnology,1(4), pp. 201–208, Dec. 2002.

    Article  Google Scholar 

  57. Kleinosowski (A. J.),Kleinosowski (K.),Rangarajan (V.),Ranoanath (P.),Lilja (D.J.), The recursive NanoBox processor grid: a reliable system architecture for unreliable nanotechnology devices.Proceedings of the 2004 International Conference on Dependable Systems and Networks — DSN’04, pp. 167–176, Jul. 2004.

  58. Almukhaizim (S.),Makris (Y.), Fault-tolerant design of combinational and sequential logic based on a parity check code. Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance inVlsi Systems —Dft 03, pp. 563–570, Nov. 2003.

  59. Lisbôa (C. A. L.),Carro (L.), Arithmetic operators robust to multiple simultaneous upsets. Proceedings of the 19th IEEE International Symposium in Defect and Fault Tolerance inVlsi Systems —Dft 2004, pp. 289–297, Oct. 2004.

  60. Schüler (E.),Carro (L.), Increasing fault tolerance to multiple upsets using digital sigma-delta modulators. Proceedings of the 11th IEEE International On-Line Testing Symposium —Iolts 2005, pp. 255–259, Jul. 2005.

  61. Lisbôa (C.A.L.),Schüler (E.),Carro (L.), Going beyondTmr for protection against multiple faults. Proceedings of the 18th Annual Symposium on Integrated Circuits and System Design —Sbcci 2005, pp. 80–85, Sep. 2005.

  62. Schmid (A.), Leblebici (Y.), Robust circuit and system design methodologies for nanometer-scale devices and single-electron transistors. IEEE Transactions on Very Large Scale Integration (Vlsi) Systems,12(11), pp. 1156–1166, Nov. 2004.

    Article  Google Scholar 

  63. Peper (F.), Lee (J.), Abo (F.), Isokawa (T.), Adachi (S.), Matsui (N.), Mashiko (S.), Fault-tolerance in nano- computer: a cellular array approach.IEEE Transactions on Nanotechnology,3(1), pp. 187–201, Mar. 2004.

    Article  Google Scholar 

  64. Lazzari (C.),Anghel (L.),Reis (R. A. da L.), On implementing a soft error hardening technique by using an automatic layout generator: case study. Proceedings of the 11th IEEE International On-Line Test Symposium —Iolts 2005, pp. 29–34, Jul. 2005.

  65. Patel (K.N.), Markov (I.L.), Error-correction and crosstalk avoidance inDsm Buses.IEEE Transactions on Very Large Scale Integration (VLSI) Systems,12(10), pp. 1076–1080, Oct. 2004.

    Article  Google Scholar 

  66. Chan (P.),Jullien (G.A.),Imbert (L.),Dimitrov (V.S.),McGibney (G.H.), Fault-tolerant computation within complex FIR filters.IEEE Workshop on Signal Processing Systems — SIPS 2004, pp. 316–320, Dec. 2004.

  67. Marculescu (D.), Energy bounds for fault-tolerant nanoscale designs.Proceedings of Design, Automation and Test in Europe — DATE 2005, pp. 74–79, Mar. 2005.

  68. Goldstein (S.C.), The impact of the nanoscale on computing systems.Ieee/acm International Conference on Computer-Aided Design, 2005 — ICCAD 2005, pp. 655–661, Nov. 2005.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira Franco, D., Naviner, JF. & Naviner, L. Yield and reliability issues in nanoelectronic technologies. Ann. Télécommun. 61, 1422–1457 (2006). https://doi.org/10.1007/BF03219903

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219903

Key words

Mots clés

Navigation