Résumé
Les performances des systèmesMimo dépendent des propriétés du canal de propagation. Les modèles de canal de propagationMimo doivent donc traduirent fidèlement ces propriétés. Il existe plusieurs familles de modèles dont celles reposant sur l’utilisation de paramètres statistiques du second ordre. Ces modèles sont rarement comparés dans un même environnement de propagation. Partant de ce constat, nous proposons dans cet article une comparaison des différents modèles dans deux environnements: « indoor » et « outdoor ». Après avoir introduit le principe des systèmesMimo et leur représentation mathématique, nous présentons les modèles utilisés. Les paramètres statistiques nécessaires à la modélisation ont été déterminés par la caractérisation expérimentale des deux environnements. Six modèles sont confrontés aux mesures à partir de la distribution de l’enveloppe des coefficients du canal et de la capacité. Leur capacité à traduire le degré de corrélation dans le canal est analysée et permet d’identifier les plus pertinents.
Abstract
Performances ofMimo systems are dependant on the propagation channel properties. These properties must be correctly introduced in theMimo channel propagation models. Several model families exist. We will particularly investigate those relying on the use of second order statistic parameters. No comparison of these models was found in a same propagation environment. As a result, this paper deals with a comparison of six different stochastic models in “indoor” and “outdoor” environments. The principle and the mathematical representation ofMimo systems are introduced. Then, we present the different models considered. The statistical parameters used in the models are computed using an experimental characterization of the two environments. The six models are then compared to measurements using the channel coefficient envelope distribution and the channel capacity. The ability of the models to express the correlation level in the channel is analysed and discussed.
Bibliographie
Foschini (G. J.), “Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas”,Bell Labs Technical Journal,1, no 2, Autumn 1996, pp. 41–59.
Gesbert (D.),Akhtar (J.), “Breaking the Barriers of Shannon’s Capacity: An Overview ofMimo Wireless System”,Telektronikk Telenor Journal., January 2002.
Yu (K.), Ottersten (B.) “Models forMimo Propagation Channels A Review”,Special Issue on Adaptive Antennas and Mimo Systems, Wiley Journal on Wireless Communications and Mobile Computing,2, no 7, pp. 653–666, November 2002.
Guguen (P.), « Techniques multi-antennes émission-réception-Applications aux réseaux domestiques sans fil », Thèse Doctorat de l’Université de Rennes, soutenue à l’Insa de Rennes, 2003.
Foschini (G. J.),Gans (M. J.), “On limits of wireless communications in a fading environment when using multiple antennas”,Wireless Personal Multimedia Communications, pages 311–335, June 1998.
Saunders (S. R.), “Antennas and Propagation for Wireless Communication Systems”,Wiley, 2001.
Loyka (S.), Tsoulos (G.), “EstimatingMimo System Performance Using the Correlation Matrix Approach”,Ieee Communication Letters,6, no 1, pp. 19–21, January 2002.
3rd Generation Partnership Project; Technical Specification Group (Tsg)Ran wg4; Deployment aspects — 3G tr 25.943 v0.1.0 (2000–03).
Gesbert (D.),Bölcskei (H.),Gore (D.),Paulraj (A.), “Mimo Wireless Channels: Capacity and Performance Prediction”,Ieee Globecom 2000, San Francisco,Ca, pp. 1083–1088, November 2000.
Yu (K.),Bengtsson (M.),Ottersten (B.),Mcnamara (D.),Karlsson (P.),Beach (M.), “Second Order Statistics ofNlos IndoorMimo Channels Based on 5.2 GHz Measurements”,Proceedings Global Communications Conference 01’, San Antonio, Texas,Usa, November, 2001.
Shiu (D-S.), Foschini (G. J.), Gans (M. J.), Kahn (J. M.), “Fading Correlation and Its Effect on the Capacity of Multielement Antenna Systems”,Ieee Transactions on Communications,48, no 3, pp. 502–513, March 2000.
Pedersen (K. I.),Andersen (J. B.),Kermoal (J. P.),Mogensen (P.), “A Stochastic Multiple-Input-Multiple-Output Radio Channel Model for Evaluation of Space-Time Coding Algorithms”,Ieee Vehicular Technology ConferenceVtc Fall 2000, Boston, 24–28 September, 2000.
Kermoal (J. P.),Schumacher (L.),Mogensen (P. E.),Pedersen (K. I.), “Experimental Investigation of Correlation Properties ofMimo Radio Channels for Indoor Picocell Scenarios”,Ieee Vehicular Technology ConferenceVtc Fall 2000, Boston,Usa, 24–28 September, 2000.
Berezansky (Y. M.),Sheftel (Z. G.),Us (G. F.), Functional analysis,1,Birkhauser Verlag, 1996
Gallager (R.), Elements of information,Wiley, 1968
Golub (G. H.),Van Loan (C. F.), “Matrix computations”, Third Edition,Johns Hopkins, 1996.
Shannon (C. E.), “A mathematical theory of communication”,Bell System Technical journal,27, pp. 379–423 and 623–656, July and October, 1948.
Pollock (T. S.),Abhayapala (T. D.),Kennedy (R. A.), “Effects of Space onMimo Capacity: A New Closed Form Upper Bound”,Ieee Transactions on Communications, submitted October 2002.
Pollock (T. S.),Abhayapala (T. D.),Kennedy (R. A.), “Fundamental Limits of Constrained Array Capacity”, Australian Communications Theory Workshop, AusCtw’2003, Melbourne, Australia, February 5–7, 2003.
Cover (T. M.), Thomas (J. A.), Elements of information theory,Wiley & Sons, 1991
Del Galdo (G.),Lotze (J.),Haardt (M.),Schneider (C), “Advanced geometry-based modeling forMimo scenarios in comparison with real measurements”,48,Internationales Wissenschaftliches Kolloquium, Ilmenau, 22–25 September, 2003.
Schumacher (L.),Berger (L.T.),Ramiro-Moreno (J.), “Recent Advances in Propagation Characterisation and Multiple Antenna Processing in the 3Gpp Framework”,Proceedings of xxvith ursi General Assembly, Maastricht, The Netherlands, August 2002, Session C2.
Jakes (W. C), “Microwave Mobile Communications”, Piscataway, NJ,Ieee Press, 1994.
Shiu (D-S)., Wireless communication using dual antenna arrays,Kluwer Academic Publisher, 2000.
Saleh (A. A.),Valenzuela (R. A.), “A Statistical Model For Indoor Multipath Propagation”,Ieee Journal on Selected Areas in Communications, pp. 128–137, February 1987.
Wallace (J.),Jensen (M. A.) “Statistical Characteristics of measuredMimo Wireless Channel Data and Comparison to Conventional Models”,Ieee Vehicular Technology Conference, pp. 1078–1082, 2001
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spatial Channel Model for Multiple-Input Multiple Output Simulations (Release 6) — 3Gpp tr 25.
Kermoal (J.P.),Schumacher (L.),Pedersen (K.I.),Mogensen (P.E.),Frederiksen (F.), “A StochasticMimo Radio Channel Model With Experimental Validation”,Ieee Journal on Selected Areas in Communications,20, no 6, August 2002.
Wennström (M.), “OnMimo systems and adaptive arrays for wireless communication — Analysis and pratical issues”, PhD thesis, Uppsala University, 2002
Pardonche (J. F.), « Systèmes de transmission sans fil multi-émetteurs, multi-récepteurs pour des applications transports. Etude des modèles de canal de propagation », thèse de Doctorat de l’Université de Lille, 13 février 2004.
Lienard (M),Degauque (P),Baudet (J),Degardin (D), “Investigation onMimo chanels in subway tunnels”,Ieee Journal on selected Areas in Communications,21, no 3, April 2003.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pardonche, JF., Berbineau, M. & Seguinot, C. Présentation de quelques modèles stochastiques de canal MIMO et comparaison expérimentale. Ann. Télécommun. 60, 649–680 (2005). https://doi.org/10.1007/BF03219941
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF03219941
Mots clés
- Radiocommunication
- Canal transmission
- Modèle stochastique
- Corrélation spatiale
- Canal radio-électrique
- Étude comparative
- Capacité canal
- Matrice corrélation
- Transmission multicanal