Skip to main content
Log in

Détection et localisation de défauts dans des réseaux filaires de topologie complexe

Defects Detection and Localization in Complex Topology Wired Networks

  • Varia
  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Résumé

La réflectométrie est une méthode couramment utilisée pour déterminer l’état électrique de câbles et de lignes. Cette méthode fournit des informations pour la détection, la localisation et la caractérisation de défauts électriques. Le CEA LIST travaille sur l’implémentation de cette méthode pour le diagnostic de réseaux filaires de topologie complexe, pour des applications embarquées ou de diagnostic en ligne. Les domaines d’application concernent les télécommunications, l’automobile et les transports, la distribution d’énergie, etc.

Cet article présente un nouveau modèle théorique pour la simulation rapide et précise de signaux de réflectométrie appliquée à tout type de réseau filaire. Basée sur la théorie de la propagation RF, ce modèle fournit des formules explicites pour simuler la réflectométrie dans les domaines temporel (TDR) et fréquentiel (FDR), explique les phénomènes et permet une meilleure compréhension de ces signaux en rapport avec la topologie du réseau.

Abstract

Reflectometry is a well known method widely used to monitor the health of lines and wired networks. This method provides information for the detection, localization and characterization of electrical defects in networks. CEA LIST works on the development and the application of this method for the diagnosis of wired networks of complex topology, targeting embedded systems. Application domains range from telecommunication to automotive and transport, energy distribution, etc.

This paper presents a new theoretical model for the precise numerical simulation of reflectometry signals applied to any kind of wired network. Based on standard microwave propagation theory, this model provides simple explicit formulas for both time domain (TDR) and frequency domain (FDR) reflectometry, and is helpful to better understand and explain measurement results in relation with the network’s topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Bibliographie

  1. Ware J. A., Aki K., Continuous and discrete inverse scattering problem in a stratified elastic medium. I — planes at normal incidence. J. Acoust. Soc. Am. 1969. no 45, pp 911–921.

    MATH  Google Scholar 

  2. Sondhi M. M., Gopinath B., Determination of vocal-tract shape from impulse response at the lips. J. Acoust. Soc. Am. 1971. No. 49, pp 1864–1873.

    Google Scholar 

  3. Furse C., Haupt R., Down to the wire: The hidden hazard of aging aircraft wiring, IEEE Spectrum, February 2001, pp 35–39.

    Google Scholar 

  4. Griffiths L. A., Parakh R., Furse C., Baker B., The invisible fray: a critical analysis of the use of reflectometry for fray location, IEEE Sensors Journal, 6, pp. 697–706, June 2006

    Google Scholar 

  5. Pan T. W., Hsue C. W., Huang J. F., Time-Domain Reflectometry Using Arbitrary Incident Waveforms, IEEE Trans. on Microwave Theory and Techniques, 50, no 11, November 2002.

    Google Scholar 

  6. Smith P., Furse C., Gunther J., Fault Location on Aircraft Wiring Using Spread Spectrum Time Domain Reflectometry, IEEE Sensors Journal, 5, no 6, pp. 1469–1478.

  7. Furse C., Smith P., Safavi M., Lo C., Feasibility of Spread Spectrum Reflectometry for Location of Arcs on Live Wires, IEEE Journal of Sensors, 5, no 6, pp. 1445–1450.

  8. Pan T. W., Hsue C. W., Huang J. F., Time-Domain Reflectometry Using Arbitrary Incident Waveforms, IEEE Trans. on Microwave Theory and Techniques, 50, no 11, November 2002.

    Google Scholar 

  9. Van Hamme H., High resolution frequency domain reflectometry, IEEE Trans. On Instrument and Measurement, 39, No. 2, April 1990

  10. Furse C., Chung Y.C., Dangol R., Frequency Domain Reflectometry for on board testing of aging aircraft wiring, IEEE Trans. EMC, 45, no 2, pp. 306–315, May 2003.

    Google Scholar 

  11. Djuric M. B., Digital signal processing algorithms for arcing fault detection and fault distance calculation on transmission lines, Elect. Power Energy Syst., 19, no 3, pp 165–170, 1997.

    Google Scholar 

  12. Mourot Y., Localisation de défauts dans les réseaux électriques, CEA internal report 2004.

    Google Scholar 

  13. Combes P. F., Micro-ondes, tomes 1 et 2, Dunod, 1997.

    Google Scholar 

  14. Hartebrodt M., Kabitzsch K., Fault detection in fieldbuses with time domain reflectometry, Proc. AFRICON2004 7th IEEE Africon Conference, Gaborone, Botswana, September 2004, 1, pp. 391–396 ISBN 0-7803-8605-1

    Google Scholar 

  15. Ravot N., Auzanneau F., A method for analysing a complex wire structure using time-frequency domain Reflectometry, to be published in IEEE proc. Antennas and Propagation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Auzanneau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auzanneau, F., Ravot, N. Détection et localisation de défauts dans des réseaux filaires de topologie complexe. Ann. Telecommun. 62, 193–213 (2007). https://doi.org/10.1007/BF03253256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03253256

Mots clés

Key words

Navigation