Skip to main content
Log in

Fitting a Pareto-Normal-Pareto distribution to the residuals of financial data

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

The Pareto-Normal-Pareto (PNP) distribution assumes that, for log returns of financial series, the innovations are normally distributed between two threshold values with Pareto tails below and above the respective thresholds. These threshold values can be estimated by maximum likelihood estimation (MLE). Monte Carlo simulations of normal, as well as heavy tailed error distributions, are used to compare the methods using this distribution with other methods to calculate Value-at-Risk (VaR) and Expected Shortfall (ESf). It is also applied to South African stock exchange data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Similar content being viewed by others

References

  • Artzner, P., Delbaen, F., Eber, J. & Heath, D. (1999), Coherent measures of risk. Mathematical Finance, 9, 3, 203–228.

    Article  MathSciNet  Google Scholar 

  • Bollerslev, T. (1986), Generalized autoregressive conditional heteroscedasticity. Journal of Exonometrics, 31, 307–327.

    Article  Google Scholar 

  • Cohen, J. (1988), Statistical power analysis for the behavioral sciences, 2nd edn., Lawrence Erlbaum Associates, Hillsdale, NY.

    MATH  Google Scholar 

  • Efron, B. & Tibshirani, R. (1993), An introduction to the Bootstrap, Chapman and Hail, New York.

    Book  Google Scholar 

  • Ellis, S. M. (2002), The distribution of the residuals of financial risk models, PU vir CHO, Potchefstroom (Ph.D. thesis).

  • Gouriéroux, C. (1997), ARCH-models and financial applications, Springer, New York.

    Book  Google Scholar 

  • McNeil, A. & Frey, R. (2000), Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7, 271–300.

    Article  Google Scholar 

  • SAS Institute Inc. (1999), SAS/ETS® User’s Guide, Version 8, SAS Institute Inc., Cary, NC.

    Google Scholar 

  • ShareNet (2002), ShareNet — your key to investing on the Johannesburg stock exchange in South Africa, [Web:]http://www.sharenet.co.za [Date of access: 20 Feb. 2002].

  • Spruill, C. (1977), Equally likely intervals in the Chi-square test. Sankhyã, Series A, 39, 3, 299–302.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix A. Estimation of PNP parameters

Appendix A. Estimation of PNP parameters

For the innovations of AR-GARCH models to have a zero expectation, it must hold that

$$E\left[ {Z|Z \le {u_1}} \right] + E\left[ {Z|{u_1} < Z < {u_2}} \right] + E\left[ {Z|Z \ge {u_2}} \right] = 0$$

or\(\mu = - {\alpha _1}{z_1}\sigma - {\alpha _2}{z_2}\sigma - \sigma \left( {\phi \left( {{z_1}} \right) - \phi \left( {{z_2}} \right)} \right) - {{{\alpha _2}{\beta _2}} \over {1 - {\xi _2}}} + {{{\alpha _1}{\beta _1}} \over {1 - {\xi _1}}}.\)

For the AR-GARCH restriction of unit variance, it must hold that

$$\matrix{ {1 + E{{\left[ Z \right]}^2} = {\sigma ^2}V = {\sigma ^2}\left\{ {{\alpha _1}\left[ {{{2\beta _1^{*2}} \over {\left( {1 - {\xi _1}} \right)\left( {1 - 2{\xi _1}} \right)}} + u_1^{*2} - {{2\beta _1^*u_1^*} \over {\left( {1 - {\xi _1}} \right)}}} \right]} \right. + \left( {1 - {\alpha _1} - {\alpha _2}} \right)\left( {1 + {\mu ^{*2}}} \right)} \\ { + \left[ {{z_1}\phi \left( {{z_1}} \right) - {z_2}\phi \left( {{z_2}} \right)} \right] + 2{\mu ^*}\left[ {\phi \left( {{z_1}} \right) - \phi \left( {{z_2}} \right)} \right]\left. { + {\alpha _2}\left[ {{{2\beta _2^{*2}} \over {\left( {1 - {\xi _2}} \right)\left( {1 - 2{\xi _2}} \right)}} + u_2^{*2} - {{2\beta _2^*u_2^*} \over {\left( {1 - {\xi _2}} \right)}}} \right]} \right\},} \\ {{\rm{with}}\,\,\beta _1^* = {{{\beta _1}} \over \sigma },\beta _2^* = {{{\beta _2}} \over \sigma },\quad \mu _1^* = {{{\mu _1}} \over \sigma },\,\mu _2^* = {{{\mu _2}} \over \sigma }\,{\rm{and}}\,{\mu ^*} = {\mu \over \sigma }.} \\ } $$

Parameters a1, a2, ξ1, ξ2, μ, σ are estimated by ML and from it \({\widehat{z}_1}\), \({\widehat{z}_2}\),,\(\widehat\beta _1^*\),\(\widehat\beta _2^*\),\(\widehat{u}_1^*\),\(\widehat{u}_2^*\)and the factor \(\widehat{V}\)is calculated. Take \({\widehat\sigma ^2} = {1 \over {\widehat{V}}}\) and now calculate \({\widehat\mu }\), \({\widehat\beta _1}\), \({\widehat\beta _2}\), \({\widehat{u}_1}\) and \({\widehat{u}_2}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, S., Steyn, F. & Venter, H. Fitting a Pareto-Normal-Pareto distribution to the residuals of financial data. Computational Statistics 18, 477–491 (2003). https://doi.org/10.1007/BF03354611

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354611

Key words

Navigation