Skip to main content
Log in

Derivation of a State-Space Model by Functional Data Analysis

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

By approximating a stochastic process by means of spline interpolation of its sample-paths, a time dependent state-space model is introduced. Then we derive the expression of the associated transition matrix that allows to obtain a discrete model useful in applications. In order to essay the behaviour of the proposed models simulations on a narrow-band process are developed. Finally, the paper includes an application with real data obtained from the Stock Market of Madrid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Similar content being viewed by others

References

  • Aguilera, A.M., Gutiérrez, R. and Valderrama, M.J. (1996), Approximation of estimators in the PCA of a stochastic process using B-splines. Communications in Statistics (Simulation and Computation), 25, 671–691.

    Article  MathSciNet  Google Scholar 

  • Aguilera, A.M., Ocaña, F.A. and Valderrama, M.J. (1999), Forecasting time series by functional PCA. Discussion of several weighted approaches. Computational Statistics, 14, 443–467.

    Article  MathSciNet  Google Scholar 

  • Deville, J.C. (1974), Méthodes statistiques et numériques de l’analyse harmonique. Annales de l’INSEE, 15, 3–101.

    Google Scholar 

  • Gourieroux, C. (1997), ARCH Models and Financial Applications, Springer Series in Statistics, Springer, New York.

    Book  Google Scholar 

  • Kiseliov, A., Krasnov, M. y Makarenko, G. (1988), Problemas de Ecuaciones Diferenciales Ordinarias, MIR.

  • Lancaster, P. and Salkauskas, K. (1986), Curve and Surface Fitting. An Introduction, Academic Press, London.

    MATH  Google Scholar 

  • McGarty, T.P. (1974), Stochastic System and State Estimation, Wiley, New York.

    Google Scholar 

  • Ortega, M. (2001), Modelización en Espacio de Estados para Datos Funcionales no Estacionarios, PhD Thesis, University of Granada.

  • Prenter, P.M. (1975), Splines and Variational Methods, Wiley, N.Y.

    MATH  Google Scholar 

  • Ruiz, J.C., Valderrama, M.J. and Gutiérrez, R. (1995), Kaiman filtering on approximative state-space models. Journal of Optimization Theory and Applications, 84, 2, 415–431.

    Article  MathSciNet  Google Scholar 

  • Valderrama, M.J., Aguilera, A.M. and Ocana, F.A. (2000), Predictión Dinámica mediante Análisis de Datos Funcionales, Hespérides-La Muralla, Madrid.

    Google Scholar 

Download references

Acknowledgements

This research was supported by Project BFM2000-1466 of Dirección General de Investigatión del Ministerio de Ciencia y Tecnología of Spain and the Research Group FQM307 financed by III-PAI of Conserjería de Educatión y Ciencia de la Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano J. Valderrama.

Appendix

Appendix

In order to calculate the coefficients αi that appear in (3) we take into account the expression of the cubic B-splines:

$$\begin{array}{*{20}{c}} {B_i^{(3)}({t_l}) = \left\{ {\begin{array}{*{20}{c}} {0\;\;\;\;,} \\ {{a_{{t_l},l - 1}},} \\ {{a_{{t_l},l - 2}},} \\ {{a_{{t_l},l - 3}},} \end{array}} \right.}&{\begin{array}{*{20}{c}} {\text{if}\;i \ne l - 1,\;l - 2,\;l - 3} \\ {\text{if}\;i = l - 1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \\ {\text{if}\;i = l - 2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \\ {\text{if}\;i = l - 3\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}} \end{array}$$

where

$$\begin{array}{*{20}c} {{a_{{t_l},l - 1}}{\rm{ }} = \,\,\,{{{{\left( {{t_l} - {t_{l - 1}}} \right)}^2}} \over {\left( {{t_{l + 2}} - {t_{l - 1}}} \right)\left( {{t_{l + 1}} - {t_{l - 1}}} \right)}}\,\,\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad } \\ {{a_{{t_l},l - 2}}{\rm{ }} = \left( {{{{t_l} - {t_{l - 2}}} \over {{t_{l + 1}} - {t_{l - 2}}}}} \right)\left( {{{{t_{l + 1}} - {t_l}} \over {{t_{l + 1}} - {t_{l - 1}}}}} \right) + \left( {{{{t_{l + 2}} - {t_l}} \over {{t_{l + 2}} - {t_{l - 1}}}}} \right)\left( {{{{t_l} - {t_{l - 1}}} \over {{t_{l + 1}} - {t_{l - 1}}}}} \right)} \\ {{a_{{t_l},l - 3}} = {{{{\left( {{t_{l + 1}} - {t_l}} \right)}^2}} \over {\left( {{t_{l + 1}} - {t_{l - 2}}} \right)\left( {{t_{l + 1}} - {t_{l - 1}}} \right)}}.\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad } \\ \end{array} $$

Then expression (3) is reduced to the linear system:

$${\alpha _{l - 3}}{a_{{t_l},l - 3}} + {\alpha _{l - 2}}{a_{{t_l},l - 2}} + {\alpha _{l - 1}}{a_{{t_l},l - 1}} = {X_\omega }\left( {{t_l}} \right)\quad \forall l = 0,1, \ldots ,n$$
((11))

and in order to guarantee an unique solution for this system it is necessary to impose that all the sample-paths have second order derivative in the extremes of the definition interval, that is, for l = 0 and l = n:

$${\alpha _{l - 3}}{a_{l - 3}} + {\alpha _{l - 2}}{a_{l - 2}} + {\alpha _{l - 1}}{a_{l - 1}} = {X''_\omega }({t_l}),$$
((12))

with:

$$\begin{array}{*{20}c} {{a_{l - 1}} = {t_{l + 1}} - {t_{l - 2}}\quad \quad \quad \quad \quad \,\,\,} \\ {{a_{l - 2}} = - \left( {{t_{l + 2}} + {t_{l + 1}} - {t_{l - 1}} - {t_{l - 2}}} \right)} \\ {{a_{l - 3}} = {t_{l + 2}} - {t_{l - 1}}.\quad \quad \quad \quad \quad \,\,} \\ \end{array} $$

Then, Prenter (1975) ensures that there exists only one cubic spline like (3) whose coefficients verify (11) and (12). We also assume that \({X''_\omega }({t_0}) = {X''_\omega }({t_n}) = 0\) because it is not common to observe such values in each sample and it is not a restrictive hypothesis as prove Aguilera et al. (1996).

Let us denote

$$\Gamma \omega = {\left( {\quad {\alpha _{ - 3}}\quad {\alpha _{ - 2}}\quad {\alpha _{ - 1}}\quad \ldots \quad {\alpha _{n - 2}}\quad {\alpha _{n - 1}}\quad } \right)^T}$$

to the coefficients vector of the cubic B-spline interpolation for the sample ω and by

$${X_\omega } = {\left( {{{X''}_\omega }({t_0})\;\;\;{X_\omega }({t_0})\;\;\;{X_\omega }({t_1})\;\;\;...\;\;\;{X_\omega }({t_n})\;\;\;{{X''}_\omega }({t_n})} \right)^T}$$

to the vector containing the observations of the sample-path ω and its second order derivative in the points 0 and T. Then, the system equations (11) and (12) can be expressed as:

$${\mathbb A}{\Gamma _\omega } = {\chi _\omega },$$

where the matrix \({\mathbb A}\) is given by:

$$\mathbb{A}=\left(\begin{array}{cccccccc}{a_{-3}} & {a_{-2}} & {a_{-1}} & {0} & {\cdots} & {0} & {0} & {0} \\ {a_{t_{0},-3}} & {a_{t_{0},-2}} & {a_{t_{0},-1}} & {0} & {\cdots} & {0} & {0} & {0} \\ {0} & {a_{t_{1},-2}} & {a_{t_{1},-1}} & {a_{t_{1}, 0}} & {\cdots} & {0} & {0} & {0} \\ {0} & {0} & {a_{t_{2},-1}} & {a_{t_{2}, 0}} & {\cdots} & {0} & {0} & {0} \\ {\cdots} & {\cdots} & {\cdots} & {\cdots} & {\ddots} & {\cdots} & {\cdots} & {\cdots} \\ {0} & {0} & {0} & {0} & {\cdots} & {a_{t_{n}, n-3}} & {a_{t_{n}, n-2}} & {a_{t_{n}, n-1}} \\ {0} & {0} & {0} & {0} & {\cdots} & {a_{n-3}} & {a_{n-2}} & {a_{n-1}}\end{array}\right)$$

and when the knots are equally spaced it is reduced to:

$$\mathbb{A}=\left(\begin{array}{cccccccc}{1} & {-2} & {1} & {0} & {\cdots} & {0} & {0} & {0} \\ {\frac{1}{6}} & {\frac{4}{6}} & {\frac{1}{6}} & {0} & {\cdots} & {0} & {0} & {0} \\ {0} & {\frac{1}{6}} & {\frac{4}{6}} & {\frac{1}{6}} & {\cdots} & {0} & {0} & {0} \\ {0} & {0} & {\frac{1}{6}} & {\frac{4}{6}} & {\cdots} & {0} & {0} & {0} \\ {\cdots} & {\cdots} & {\cdots} & {\cdots} & {\ddots} & {\cdots} & {\cdots} & {\cdots} \\ {0} & {0} & {0} & {0} & {\cdots} & {\frac{1}{6}} & {\frac{4}{6}} & {\frac{1}{6}} \\ {0} & {0} & {0} & {0} & {\cdots} & {1} & {-2} & {1}\end{array}\right).$$

The inverse \({\mathbb T} = {{\mathbb A}^{ - 1}}\) is called B-spline interpolation matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valderrama, M.J., Ortega-Moreno, M., González, P. et al. Derivation of a State-Space Model by Functional Data Analysis. Computational Statistics 18, 533–546 (2003). https://doi.org/10.1007/BF03354615

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354615

Key words

Navigation