Skip to main content
Log in

Improving bandwidth selection methods by adding qualitative constraints

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

In the context of nonparametric density estimation, we consider the combination of automatic bandwidth selection rules with qualitative constraints on the search space of bandwidths derived from bounds on the number of modes. These constraints can be easily combined with an upper bound based on the concept of oversmoothing introduced by Terrell and Scott (1985).

Rather obviously, if a correct upper bound on the number of modes is known, our proposed approach helps to ensure an adequate representation of known qualitative features by the estimate. More surprisingly, even loose upper bounds on the number of modes are able to improve the MISE behavior of least squares cross-validation, by reducing the known tendency of under-smoothing of this bandwidth selector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Bickel, P.J. and Fan, J. (1996) Some problems on the estimation of unimodal densities. Statist. Sinica 6, 23–46.

    MathSciNet  MATH  Google Scholar 

  2. Birge, L. (1997) Estimation of unimodal densities without smoothness assumptions. Ann. Statist. 25, 970–981.

    Article  MathSciNet  Google Scholar 

  3. Bowman, A. W. (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71, 353–360.

    Article  MathSciNet  Google Scholar 

  4. Chiu, S.-T. (1996) A comparative review of bandwidth selection for kernel density estimation. Statist. Sinica, 6, 129–145.

    MathSciNet  MATH  Google Scholar 

  5. Cuevas and Gonzalez-Manteiga (1991) Data-driven smoothing based on convexity properties. In: Nonparametric functional estimation and related topics. Roussas, G. (ed.) pp. 225–240, Dordrecht: Kluwer 1991.

    Google Scholar 

  6. Duin, R.P.W. (1976) On the choice of smoothing parameters for Parzen estimators of probability density functions. IEEE Transactions on Computers, 25: 1175–1178.

    Article  Google Scholar 

  7. Eggermont, P.P.B, and LaRiccia, V.N. (2000) Maximum likelihood estimation of smooth monotone and unimodal densities. Ann. Statist. 28, 922–947.

    Article  MathSciNet  Google Scholar 

  8. Fougères, A.L. (1997) Estimation de densités unimodales. Canad. J. Statist. 25, 375–387.

    Article  MathSciNet  Google Scholar 

  9. Habbema, J.D.F., Hermans, J. and van der Broek, K. A stepwise discriminant analysis program using density estimation. In COMPSTAT 1974, Proceedings in Computational Statistics, (G. Bruckmann ed.) 101–110, Physica, Heidelberg.

  10. Hall, P. (2002). Personal communication.

  11. Izenman, A.J. and Sommer, Ch.J. (1988) Philatelic mixtures and multimodal densities. JASA 83, 941–953.

    Article  Google Scholar 

  12. Jones, M. C, Marron, J. S., Sheather, S. J. (1996a) Progress in data-based bandwidth selection for kernel density estimation. Computat. Statist. 11, 337–381.

    MathSciNet  MATH  Google Scholar 

  13. Jones, M. C, Marron, J. S., Sheather, S. J. (1996b) A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91, 401–407.

    Article  MathSciNet  Google Scholar 

  14. Konakov, V. and Mammen, E. (1997) The shape of kernel density estimates in higher dimensions. Math. Methods Stat. 6, 4, 440–464.

    MathSciNet  MATH  Google Scholar 

  15. Karlin, S. (1968) Total Positivity. Stanford Univ. Press, Stanford, California.

    MATH  Google Scholar 

  16. Loader, C.R. (1996) Local regression and likelihood. Electronic book, http://cm.bell-labs.com/stat/project/locfit.

  17. Loader, C.R. (1999) Bandwidth selection: Classical or plug-in? Ann. Statist. 27, 415–438.

    Article  MathSciNet  Google Scholar 

  18. Mammen, E., Marron, J. S., Fisher, N. I. (1992) Some asymptotics for multimodality tests based on kernel density estimates. Probab. Theor. Relat. Fields 91, 115–132.

    Article  MathSciNet  Google Scholar 

  19. Robertson, T., Wright, F.T. and Dykstra, R. L. Order restricted statistical inference. Wiley, Chichester 1988.

  20. Rudemo, M. (1982) Empirical choice of histograms and kernel density estimators. Scand. J. of Statist., 9, 65–78.

    MathSciNet  MATH  Google Scholar 

  21. Silverman, B. W. (1981) Using kernel estimates to investigate multimodality. J. R. Stat. Soc. Ser. B 43 97–99.

    MathSciNet  Google Scholar 

  22. Terrell, G. R. and Scott, D. W. (1985) Oversmoothed nonparametric density estimates. JASA 80, 209–214.

    Article  MathSciNet  Google Scholar 

  23. Terrell, G. R. (1990) The maximal smoothing principle in density estimation. JASA 85, 470–477.

    Article  MathSciNet  Google Scholar 

  24. Wegman, E.J. (1969) A note on estimating a unimodal density. Ann. Math. Statist. 40, 1661–1667.

    Article  MathSciNet  Google Scholar 

  25. Wegman, E.J. (1970a) Maximum likelihood estimation of a unimodal density function. Ann. Math. Statist. 41, 457–471.

    Article  MathSciNet  Google Scholar 

  26. Wegman, E.J. (1970b) Maximum likelihood estimation of a unimodal density II. Ann. Math. Statist. 41, 2169–2174.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The work has been supported by the Austrian Science Foundation FWF. We also wish to acknowledge a Research Infrastructure Grant from Murdoch University which helped in the initial support for collaboration leading to this article. The helpful comments of the referees are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Futschik, A., Clarke, B.R. Improving bandwidth selection methods by adding qualitative constraints. CompStat 19, 445–453 (2004). https://doi.org/10.1007/BF03372106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03372106

Keywords