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Abstract  

The problem of generating information system designs from requirements specifications 
is addressed, with the presentation of a framework for representing requirements and a 
mapping assistant, IRIS 3, that facilitates the design generation process. Requirements are 
viewed as knowledge bases and the knowledge representation formalism for the prototype, 
also the language for implementing IRIS, is Telos which provides facilities for describing 
entities and relationships and for representing and reasoning with temporal knowledge. 
The generation of a design is achieved with a mapping process from requirements which 
is: (i) Locally guided by dependency types determining allowable mappings of an element 
of a requirements model, (ii) globally guided by non-functional requirements, such as ac- 
curacy and security requirements on the intended system, represented as goals describing 
desirable properties of the intended system and used to guide local decisions. 

The paper details a prototype implementation (IRIS) of the proposed mapping frame- 
work and illustrates its features through a sample session. 

tThis is a _report on results from the DAIDA project, funded in part by the European Commission 
through the Esprit programme under contract no. 892 [Jarke86]; financial support for this research was 
also received from the Institute of Computer Science of the Foundation for Research and Technology - 
Hellas (FORTH), the National Science and Engineering Research Council of Canada and the University 
of Toronto. 

2Department of Computer Science University of Toronto, Canada 
3IRIS was a famous Greek goddess, considered to be the personal assistant of Zeus. 
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1 Introduct ion  

A requirements model includes both functional and non-functional requirements [Ro- 
man85]. Functional requirements provide constraints on the functionality of the intended 
system and for the case of information systems may include (a) a description of the envi- 
ronment within which the intended information system will eventually function, hereafter 
the environment model, (b) a description of the functions carried out by the information 
system, hereafter the system model and (c) a description of the interactions between the 
intended system and its environment, hereafter the interaction model [Borgida89]. Since 
the subject matter of requirements modelling is some part of the world, it is reasonable 
to view requirements models as knowledge bases which capture knowledge about an envi- 
ronment, e.g., a corporation or an office, but also describe how the intended information 
system is to be embedded in and interact with that environment ([Zave81] [Jackson83] 
[Mylopoulos86] also adopt this point of view). 

In addition to functional requirements, a requirements model also includes non-functional 
requirements which impose global constraints on the operation, performance, accuracy 
and security of any proposed solution to the functional requirements model. For example, 
considering a hypothetical expense report system for research projects, non-functional 
requirements may require that the intended system run on a PC, and that the expense 
information be accurate and secure in the sense that it is only available to key persons 
within each project. 

An information system design describes the structure of the information managed by 
the intended system as well as the behavior of the processes manipulating that informa- 
tion. As such, it can be viewed as a formal specification of the system to be built in 
the spirit of formal specification work [Hayes87]. However, unlike formal specifications 
intended for other programming tasks, such as the development of an operating system, 
those of interest here include descriptions of highly complex data structures and generally 
simple algorithms. Semantic Data Models have been offered as extensions of conventional 
data models appropriate for the development of information system designs [Borgida85]. 
Such models attempt to capture a human's conceptualization of the structure and behav- 
ior of an information system while omitting implementation details. 

The generation of a system design involves many refinements in mapping each of 
the various components of requirements models down to different constituents of system 
designs. Without adequate guidance on how to make refinements, the generation of a 
system design is an extremely difficult task. Some of the problems that need to be faced 
in generating system designs include: 

1. Coping with omissions in functional requirements: In requirements models, details 
are omitted concerning entities, cause-effect chains, and requirements violations. 
Since system designs result from successive refinements of requirements models, we 
need to discover rules that assist the introduction of the omitted details for various 
components of requirements models. 

2. Supporting non-functional requirements: Little work exists on how to use non- 
functional requirements in the generation of a system design. 

3. E=ploiting representational commonalities: The languages or formalisms chosen for 
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requirements modelling and system design hopefully may share knowledge represen- 
tation features. Methods need to be developed for the exploitation of eommonalities 
in order to simplify the mapping process. 

4. Correctness of mapping: Each design should be consistent to the requirements spec- 
ification from which it was generated. However, no formal framework is available 
to date that guards against invalid mappings. Thus, we need to devise ways for 
ensuring the correctness of mappings. 

It should be noted that not all the parts of a requirements model are mapped down 
to designs. The components of the systems model are only mapped to designs. The rest 
of the requirements model prescribes the nature of interaction of the information system 
and its environemnt and the meaning of the information maintained by the system. 

The paper presents IRIS, a mapping assistant prototype/demonstrator of a dependency- 
based, goal-ovientedmethodology to the mapping problem. The methodology is dependency- 
based in the sense that the mapping of parts of the requirements model into a design is 
guided by predefined allowable dependencies. Data entities in the design, for example, 
may only be derived from, and therefore depend on, entities in the functional requirements 
model, while activities may be mapped onto transactions or scripts. 

At the same time, the methodology is goal-oriented in the sense that non-functional 
requirements are treated as possibly conflicting goals to be satisfied, to a greater or lesser 
extent, by the generated design. For each requirement goal, our proposed methodology 
offers a set of refinement methods to designers to help them guide the mapping process. 
Each refinement method allows the decomposition of a posted goal into sub-goals and is 
based on an explicit model for each class of non-functional requirements handled by the 
methodology (e.g., accuracy, security, operational, performance). 

The work reported in this paper was carried out in part within the framework of the 
DAIDA project, whose goal is to build a software engineering environment for developing 
and maintaining information systems. Key features of the project are: (a) requirements 
models and designs are viewed as knowledge bases and representation languages are cho- 
sen accordingly, (b) a knowledge base management system which maintains a complete 
design record for an information system is developed, and (c) mapping methodologies 
from requirements models to designs to implementations are created. 

Telos, TDL (Taxis Design Language) and DBPL 4 are the languages adopted for re- 
quirements modelling, design and implementation respectively. The Global Knowledge 
Base Management System, or GKBMS, manages general knowledge used to guide the 
users of the environment in the development of a requirements model and in the mapping 
of that model to a design and later on an implementation. The GKBMS also main- 
tains a history record of decisions and dependencies among requirements, design and 
implementation components. A detailed description of the DAIDA architecture and the 
initial aspirations of the project are beyond the scope of this paper and are described in 
[Borgida89], while the GKBMS component is presented in [Jarke89]. 

4The former languages are introduced in the paper mainly with examples and small explanations. 
DBPL is a database programming language developed at the University of Frankfurt, which offers a 
Modula 2-like programming framework extended it with sophisticated relational database management 
facilities [Sehmidt88]. 
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The language for requirements modelling, used in this paper, is Telos[Koubarakis89]. 5 
Telos adopts a representational framework which includes structuring mechanisms analo- 
gous to those offered by semantic networks [Findler79] and semantic data models [Hull87]. 
In addition, Telos offers an assertional sublanguage which can be used to express both 
deductive rules and constraints with respect to a given knowledge base. Two novel aspects 
of Telos are its treatment of attributes, promoted to a first class citizenship status, and 
the provision of special representational and inferential facilities for temporal knowledge. 
Descriptions in a Telos knowledge base are partitioned into tokens and classes, depending 
on whether they represent particular entities, say the person John or the number 23, 
or abstract concepts, say those of Person or Number. Classes are themselves instances 
of other more generic classes, namely, metaclasses that are, in turn, organized along an 
instantiation hierarchy. 

Apart from this representational framework, shared to a large extend by the adopted 
design language and many other semantic data models, Telos views a requirements model 
as an account of a history of events and activities, thus emphasizing the use of time in the 
description of a corporation or office within which the intended information system will 
function. The model of time adopted is based on time intervals [Allen81]. Every Telos 
proposition includes, along with other structural information, a temporal interval which 
specifies the lifetime of the represented entity or relationship. Time intervals are related 
to each other through temporal relations such as before, during and overlaps (thirteen 
possibilities in all) during the description of individuals or through assertions. Inferences 
with respect to temporal relations are handled by a special inference procedure rather 
than a general purpose inference mechanism, with obvious performance advantages. In 
addition, each Telos expression has a temporal component which acts as a filter on its 
possible values. 

Design specifications, according to the DAIDA world view, present a conceptual view 
of the information system by structuring the data and transactions which constitute the 
system according to their intended meaning rather than their implementation. TDL (short 
for Taxis Design Language) facilitates the development of such specifications by offering 
a uniform semantic data model for describing data, transactions and long-term processes 
[Borgida89]. As with many other semantic data models, the one adopted here offers the 
notions of entity and relationship along with aggregation, generalization and classification 
intended as structuring mechanisms. 

TDL offers a variety of data classes for modelling the entities that are relevant to the 
application domain and at the same time will eventually be stored in the database(s) 
of the information system. Data classes include as special cases conventional data types 
(Integer, String, enumerated and subrange types), but also labelled Cartesian products 
aggregate classes, whose instances have equality decided structurally, and entity classes 
which have their extensions (collections of instances) externally updated. 

Each type of data class has associated attribute categories which indicate the kinds 
of attributes that are applicable to their members. It should come as no surprise that 
subclass hierarchies are supported and their use is encouraged throughout the design. 
Note that as a specification language, TDL makes no commitment on how such attributes 
are to be stored (arrays, records, relations), nor whether the information provided by the 

5Telos has evolved from CML ([Stanley86]) which, in turn, is an enhanced version of RML, a require- 
ments modelling language proposed in ([Greenspan84]). 
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attribute will be obtained by look-up or computed by a function. It is the prime goal of 
the design-to-implementation mapping process to make and justify these decisions. 

Turning to its procedural sublanguage, TDL offers functions and two types of proce- 
dures that effect state changes: transactions, intended to define atomic database opera- 
tions, and scripts, intended to model long term processes. Each transaction is supposed 
to specify a set of allowable state transitions through pre/postcondition constraints on 
the values of the state variables (attribute functions, parameters and class extensions). 

TDL assumes frame axioms, i.e., state components that are not affected by a trans- 
action, are assumed to remain unchanged. This is one of the fundamental differences 
between TDL and Telos. 

As indicated earlier, to model activities with prolonged duration (e.g., running a 
project) as well as to describe the system's interaction with its users, TDL supports 
the notion of scripts [Barron82], [Chung84]. A script is built around a Petri-net skeleton 
of states connected by transition arcs which are augmented by condition-action rule pairs. 
The rules allow reference to the passage of time, and permit the exchange of messages 
following Hoare's CSP mechanism. 

While it is beyond the scope of this paper to fully and formally introduce Telos and 
TDL, it unavoidably dwells into some notational details of the two languages while de- 
scribing the mapping assistant. Effort is made to keep this to a minimum without losing 
scientific validity and content. 

Section 2 describes the dependency-based, goal-oriented mapping framework adopted 
and analyses some of the technical problems that arise in mapping requirements to de- 
signs. Section 3 goes over an example session using IRIS to give a feel of the framework 
and the facilities that could be expected. A functional requirements model, concerning 
project expense accounts, which is used as running example throughout the paper is also 
presented. Major mapping issues such as the problem of representation are discussed in 
Section 4. Finally, Section 5 presents the status of the implementation and some conclud- 
ing remarks. 

2 IRIS: A Prototype  Mapping Assistant 

This paper emphasizes the dependency-based aspect of the mapping problem, while more 
details on the complete goal-oriented methodology and the use of non-functional require- 
ments for the mapping process can be found in [Chung89]. 

The role of IRIS is to assist the designer who makes the final decisions. Dependency 
types define the options available to him/her, while dependencies relate design objects and 
the corresponding requirements objects. Automatic selection of dependencies is performed 
only in situations where there is a single applicable dependency and the system need only 
inform the designer of the selected dependency. The mapping assistant interface employs 
a graphical presentation of objects and dependencies at two different levels of detail. 

2 .1  S y s t e m  A r c h i t e c t u r e  

The mapping activity transforms the system model component of a requirements specifica- 
tion into a conceptual design. A fundamental consideration throughout the mapping pro- 
cess is the interplay of requirements entities and activities with corresponding design data 
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Figure 2.1 General Architecture of the Mapping Assistant 

classes, transactions and scripts. The dependencies and dependency types used by the 
mapping assistant are represented in Telos, along with requirements and design objects. 
IRIS, the mapping assistant, assumes the following types of dependencies: classification 
(dealing with mappings of classes), attribute (dealing with the mapping of attributes), IsA 
(for IsA hierarchies), and instantiation (for instantiation hierarchies). Figure 2.1 depicts 
the general architecture of the mapping assistant, the knowledge relevant to the mapping 
task and the assistant's interaction with the user. 

2 .2  R e p r e s e n t a t i o n  o f  D e s i g n  O b j e c t s  in  T e l o s  

The features, syntax and semantics, of the conceptual design language TDL have been 
modeled as Telos metadasses organized along isA hierarchies. These metaclasses have 
as instances dasses which represent components of the conceptual design, i.e., TDL 
classes. All these individual and attribute metaclasses are instances to the oraega..class, 
TDL_0bj ect and will be referred to as abstract TDL objects. At the top of the metadass isA 
hierarchy is TDL_MetaClass with specialized subclasses TDL.2ataClass, TDL_Procedure 
and TDL_Script. 

Generally, the Telos representation of TDL designs encompasses two layers, the first 
consisting of metaclasses modelling features of the design language (TDL) and is application- 
independent, while the second consists of simple dasses representing the conceptual design 
model for a particylar application. The organization of abstract TDL objects is depicted 
in Figure 2.2. 
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Design language 
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lass;LGenMonExpRep isA 

Figure 2.2 Two-layer representation of the design modal in Telos 

The discussion that follows focuses on the modelling of attribute categories of the de- 
sign language. These have been defined as Telos attribute metaclasses organized along isA 
hierarchies. TDLAtt r ibu teClass  is treated here as the most general attribute metaclass 
with specializations: 
TDL_Dat aAt t ribut eClas s, TDL_Transact ionAtt ribut eClass and 
TDL_ScriptAttr ibuteClass.  These metaclasses are further specialized to lead to def- 
initions of TDL attribute categories. 

AttributeClass TDL_AttributeClass in Ml_Class, TDL_Object with 
components 

from: TDL_MetaClass; 

label: String; 

to: TDL_MetaClass ; 

when: AllTime; 

end TDL_AttributeC1ass 

The component  a t t r ibutes  of this definition indicate the internal s t ructure  of the  propo- 
sition TDL_AttributeClass ~ The Telos attribute class Produces shown below is the 
attribute metaclass modelling the TDL attribute category Produces. The from com- 
ponent of each attribute class specifies the valid objects where that attribute class can 

6The internal structure of every Telos proposition includes four components, labelled respectively 
from, label, ~o, when. Since the when component of all definitions below is AllTime, it will be omitted 
from definitions that follow. 
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be used. In particular, Produces can be used as attribute category only in instances of 
TDL_TransactionClass. 

AttributeClass TDL_TransactionAttributeClass 

in Ml_C1ass 

isA TDL_AttributeClass with 

components 

from: TDL_TransactionClass; 

label: String; 

to: TDL_MetaC1ass; 

end TDL_TransactionAttributeClass 

AttributeClass Produces in Ml_Class, TDL_0bject 
isA TDL_TransactionAttributeClass with 

components 
from: TDL_TransactionClass; 

label: produces; 

to: TDL_Object; 
end Produces 

The not setOffeature of TDL is represented in the model of abstract TDL objects by 
the built-in Telos attribute category s ingle ,  an attribute which is not single is by default 
setOf. 

Justification is another interesting attribute metaclass which relates each abstract TDL 
object with an instance of the selected mapping dependency, which effected the creation 
of that object. 

For instance, using some the constructs discussed, the TDL transaction GeabfoaExpRep 

TRANSACTION GenMonExpRep WITH 

IN 

exp: SETOF Expense; 

LOCALS 

pr : Project; 

m: Month; 

per: String; 

CONSUMES 
exp : SETOF Expense; 

PRODUCES 
expRep: MonthlyEmplExpenseReport ; 

GOALS 
• (expRep.mo' = m) AND (expRep.amount' = SUM(exp)) 

AND (expRep.proj' = pr) 

END 

is represented in Telos by the class TDLGenMonExpRep as demonstrated by: 
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IndividualClass TDLGenMonExpRep 
in S_Class, TDL_TransactionClass, 

justification 
: MonMbrExpRptToTDLGenMonExpRep_Dep 

tdl_in 
exp: TDLExpenses 

locals, single 
pers: TDL_String; 
m: TDLMon 

produces, single 
exr: TDLMonEmpIExpRep 

end TDLGenMonExpRep 

TDL_0bj ect with 

2.3 Representat ion  of  Mapping Dependencies 
Telos classes and metaclasses model the mapping dependencies between a requirements 
model and a corresponding conceptual design. The dependency metaclasses, modelling 
dependency types, define conditions under which there can be a dependency between a 
requirements and a design object. For the purposes of the prototype system, a depen- 
dency name, by convention, indicates the type of both the source requirements object 
and the target TDL object. For instance, the dependencies Activity_Transaction_Dep 
and NecessarySingle_Unchanging_Dep model the mapping of Telos activity classes into 
TDL transactions and the mapping of a Telos necessary and s ing le  attribute to a TDL 
unchanging attribute respectively. Every dependency metaclass has at least two neces- 
sary attributes named respectively t e los0b j  ect  and abstractTDL0bj ect  which indicate 
the corresponding requirements and design objects. 

Dependency metaclasses for Telos activities and TDL transactions are shown below. 
The attribute telosObj ect in the dependency 
Act ivity_Transact ion_Dep is inherited from Act ivit y_Procedure_Dep. 
The integrity constraint in Activity_Procedure_Dep states that the life of the instances 
of Activity_Procedure_Dep co-end with the life of the transformed activity. The map- 
ping of the attributes of an object from the requirements model are represented by the 
attribute at tr ibuteDep.  All the dependency classes are instances of the omega_class 
0mega_Dep. The most generalized dependency metaclass is Telos_TDL__Dep. The attribute 
isaDep models the mapping of isA relationships. 

IndividualClass Telos_TDL_Dep in Ml_Class, 0mega_Dep with 
necessary 

telos0bject: SystemClass; 
abstractTdlDbject: TDL_MetaClass 

attribute 
isaDep: ISA_Dep 

end Telos_TDL_Dep 

IndividualClass Activity_Procedure_Dep 
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in Ml_Class, 0mega_Dep, 
isA Telos_TDL_Dep with 

necessary 
telosObject: ActivityClass; 
abstractTdl0bject: TDL_ProcedureClass 

integrityConstraint 
: $(Forall x/Activity_Procedure_Dep) 

(coends(wben(x), when(x.telosObject))$ 
end Activity_Procedure_Dep 

IndividualClass Activity_Transaction_Dep 
in MI.Class, 0mega_Dep 
isA Activity_Procedure_Dep with 

necessary 
abstractTd10bject: TDL_TransactionC1ass; 
attributeDep: TransactionAttribute_Dep 

attribute 
isaDep: Activity_Transaction_ISA_Dep 

end Activity_Transaction_Dep 

The dependency 0utputSingle_Produces_Dep modds the mapping of an output at- 
tribute ~om a Telos activity class to a produces attribute in a TDL transaction. The 
integrity constraint in 0utputSingle_Produces_Dep, states that before mapping an at- 
tribute of a Telos object the type of that attribute, an attribute class, should have been 
mapped. Attribute_Dep is the most generM dependency metaclass for attributes. 

IndividualClass Attribute_Dep in Ml_Class, Omega_Dep 
attribute 

telosAttribute: AttributeClass; 
abstractTdlAttribute: TDL_AttributeClass 

end Attribute_Dep 

IndividualClass TransactionAttribute_Dep 
in Ml_Class, 0mega_Dep 
isA Attribute_Dep 

end TransactionAttribute_Dep 

IndividualClass ActivitySingle_Dep in Ml_Class, 0mega_Dep 
isA TransactionAttribute_Dep 

end ActivitySingle_Dep 

IndividualClass ActivitySet0f_Dep in Ml_Class, 0mega_Dep 
isA TransactionAttribute_Dep 

end ActivitySet0f_Dep 

IndividualClass 0utputSingle_Produces_Dep 
in Ml_Class, 0mega_Dep 
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isA ActivitySingle_Dep with 
necessary 

telosObject:  Output; 
abstractTdlObject: Produces 

integrityConstraint 
:$ (Forall x/OutputSingle_Produces_Dep) 

(Exists existingDep/Activity_Transaction_Dep) 
(existingDep.telosObject=from(x.telosObject) and 
(existingDep.attributeDep = x))$ 

end OutputSingle_Produces_Dep 

According to these definitions, the mapping of the 
&MonMbrExpRpt 

activity class 

IndividualClass &MonMbrExpRpt 
in S_Class, ActivityClass, SystemClass 
isA &GenExpenseReport with 

input 
exp; &Expense 

control  
pers: &Person; 
m: &Month 

output 
exrep: ~MonEmpIExpRpt 

activationCondition 
: (Exists t/Dats)(now during t and 

LastDayOfMonth(t, m)) 
end aMonMbrExpRpt 

leads to the following dependencies: 

IndividualClass MonMbrExpRpt ToTDLGenMonExpRep_Dep 
in S_Class, Activity_Transaction_Dep 
isA Dep_S_Class with 

telosObj ect 
: MonMbrExpRpt 

abs tract Tdl 0bj ect 
: TDLGenMonExpRep 

attribut eDep 
: MonMbrExpRpt_exp_Dep; 
: MonMbrExpRpt_pers_Dep 
: MonMbrExpRpt_m_Dep; 
: MonMbrExpRpt_ exrep_Dep 

end MonMbrExpRptToTDLGenMonExpRep_Dep 
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IndividualClass MonMbrExpRpt_ exrep_Dep 

in S_Class, OutputSingle_Produces_Dep 
isA Dep_S_Class with 

telosObj ect 
: ~MonMbrExpRpt ! exrep 

abstractTdlObj ect 
: TDLGenMonExpRep ! exr 

end MonMbrExpRpt _ exrep_Dep 

Note that dependency metadasses, as defined here, are independent of the application 
domain and only depend on the nature of requirements and design specifications. Selecting 
a dependency type results in the creation of an instance to the corresponding dependency 
metaclass. 

3 A Sample Session 

The prototype implementation of the mapping assistant IRIS was developed with the 
following requirements in mind: 

• Assistance to the designer with the decisions he needs to make during the mapping 
process. 

• Maintenance of the history of the mapping process. 

• Offering simple-to-use tools that aid the mapping process. 

Figure 3.1 shows the interface of IRIS, consisting of three separate areas: 

• The Telos area, which provides access to Telos objects. (More precisely, the SML 
area, where SML is an extension of Telos with built-in attribute categories, Telos 
and SML are used interchangeably) 

• The TDL area, which provides access to TDL objects. 

• The dependency types area, which provides information on available dependencies. 

Early on in the implementation of the mapping assistant, and consistently with other 
components of the DAIDA project, it was decided to use graphical representation to help 
the designer have a better view of the contents of the requirements and design specifica- 
tions as well as the mapping process. Moreover, node highlighting and dynamic pop-up 
menus were adopted as display methods to suggest to the designer possible choices. In 
addition, the mapping assistant is equipped with a powerful TDL editor which mini- 
mizes the amount of information to be provided by the designer during the mapping of a 
requirements object into a design one. 

Consider the following example, for the purposes of demonstrating the mapping pro- 
eess. Suppose that the designer decides to map the following isA hierarchy which is part 
of the requirements model: 
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IndividualClass &GenExpenseReport 
in S_Class, ActivityClass, SystemClass with 

input,single 
proj: &Project 

end &GenExpenseReport 

IndividualClass ~MonMbrExpRpt 
in S_Class, ActivityClass, SystemClass 
isA ~GenVYpenseReport with 

input 
exp: &Expense 

control,single 
m: &Month; 
pers: &Person 

end &MonMbrExpRpt 

This hierarchy consists of two activities. The most general activity kGenExpenseReport 
generates project reports and a special case of this is the generation of monthly expense 
reports for employees expressed in our example by activity &Mom'CorExpRpt. 

There are two different ways to map this hierarchy. 
One way is to use the isA hierarchy provided by TDL. In this case we simply~map 

each Telos Activity to a TDL Transaction as follows: 

TRANSACTION GenRep WITH 
IN 

pr: Proj ; 

END 

TRANSACTION GenMonExpRep ISA GenRep WITH 
IN 

exp: SETOF Expense; 
LOCALS 

m: Mort; 

per: String; 
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An alternative way is to decide to eliminate this hierarchy from the design specification 
and to create instead the following transaction: 

TRANSACTION GenMonExpRep WITH 
IN 

pr: Proj ; 
exp: SETOF Expense; 

LOCALS 
m: Mon; 

per :  S t r ing ;  

END 

This alternative combines mapping of a requirements object with the projection of 
attributes to all specializations of a class and is referred to as mapping with inheritance 
in [Katalagarianos89]. For the example, &MonMbrExpRpt is mapped, with its own and 
inherited attributes, while aGenExpensel~eport is not. The particular steps required for 
this mapping task are as follows: 

1. Selection of the level of the objects to be mapped. 

Each mapping task begins with the selection of a requirements object. Preliminary to 
this step, a pop up menu allows the designer to select the classification level of the object 
to be mapped by choosing 

• Simple Classes. 

• M1 Classes. 

• Meta Meta Classes which consist from M2 classes up to Omega classes. 

Act ion:  Select Simple Classes item, figure 3.1. 

Effect:  All simple classes are presented graphically in the Telos area. 

2. Selection of the object to be mapped 

Next, a specific object is selected for mapping. To complete the mapping, the designer 
needs to first review its complete description. By clicking the right button of the mouse 
on a node which represents a particular class, a pop-up menu appears on the screen. 
Figure 3.2 shows the menu corresponding to class &MonMbrExpRpt. As ~MonMbrExpRpt 
is a specialization of S:GenExpenseReport, two different alternatives are offered to the 
designer for the mapping. Either he can choose the item start mapping/show dep which 
corresponds to the case of mapping the Telos isA hierarchy into a corresponding TDL 
one, or he can choose the item mapping with inheritance~show dep. Both items contain 
show dep, because if the selected class (or hierarchy) has already been mapped then the 
dependency graph corresponding to that previous mapping is going to be displayed. 
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Act ion :  Select mapping with inheritance 

Effect :  Attribute displayer comes up (Figure 3.3). The inherited attributes are colored 
grey. 

In order to map a class, the types of its attributes must have been mapped before. If 
this is not the case, the mapping assistant suspends the mapping process. The special 
sign "M" on some nodes on the attribute displayer shows that the classes represented by 
these nodes have been mapped. 

3. Start the mapping process for the object 

The next step is to decide how that object is going to be mapped without having in 
mind whether it has attributes or not for the time being. By clicking the right button 
of the mouse on the class node ~MonMbrExpRpt on the attribute displayer figure 3.3, a 
pop-up menu comes up with the item map. 

Act ion :  Select map 

Effect :  Some nodes of the mapping rules area are turned into grey (highlighted), figure 
3.4. 

4. Selection of the mapping rule to be used 

The designer has to decide which rule to chose from the grey ones figure 3.4. The sys- 
tem has highlighted the applicable ones for this mapping task. By clicking the appropriate 
highlighted node, a pop_up menu comes up. 

Act ion:  Select Fire 

Effect:  A TDL editor comes up with the frame of the TDL object to be created, figure 
3.5. 

5. Start creating TDL Object 

The designer just fills up the slot with the name of the new TDL object. 

Ac t ion :  Click create abstr button of the TDL editor. 

Effect :  The dependency corresponding to the mapping performed is shown on the at- 
tribute displayer, figure 3.6. 

6. Continue with attribute mapping 

The next step is to proceed with the mapping of the attributes including the inherited 
ones. 
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Action: Click on an attribute link and select the only item map of the pop-up menu. 

Effect: Some nodes in the mapping rule area are highlighted to grey, figure 3.7. 

7. Selection of the mapping rule to be used for attribute mapping 

Action: Select Fire by clicking the desirable highlighted node. 

Effect: The form of the TDL attribute appears on the TDL editor. 

The TDL attribute type is provided by the mapping assistant. The designer only gives 
the attribute name. 

Action: Fill up the attribute name and press create abstr. 

Effect: The dependency corresponding to the mapping of attribute is shown in the at- 
tribute displayer, figure 3.8. 

Action: Repeat steps 6) and 7) until all the attributes have been mapped. 

After all attributes are mapped the abstract TDL object and dependency instances 
corresponding to this mapping have been created. 

Action: Press the button SML Tell of the TDL editor. 

Effect: Abstract TDL object and dependency instances are being Told to TELOS KB. 

Action: Press Syntaz Check and then Consistency on the TDL editor. 

Effect: TDL object is being Toldto TDL KB. Class &l%n.WorExpRpt is marked as mapped 
on the attribute displayer, and mappping is over. Figure 3.9 shows the corresponding 
dependency graph. 

Special handling is offered by the mapping assistant when a requirements object that 
has already been mapped needs to be changed. In order to maintain consistency, all Telos 
objects influenced by this change have to be remapped. The designer does not have to 
follow the mapping steps described previously in order to remap these objects. Instead 
the mapping assistant finds the objects that have been affected by the change and asks the 
designer to take specific actions. For example, it may be recommended that the designer 
remove the changed objects and remap the new ones, or change specific objects created 
by the old mapping process without having to remap the changed object. The actions to 
be taken by the designer in such circumstances are intended to preserve consistency, of 
the requirements specification, the design specification or the mapping process. 
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4 Mapping Issues 

The previous sections outlined a mapping framework which guides the user to syner- 
gistically develop a requirements specification and a corresponding design. Guidance is 
determined by the dependency types supported by the mapping assistant and by our 
adopted refinement methodology. This mapping framework underconstrains the user in 
his choice of a design for a given requirements specification. This section points out some 
of the areas where the designer needs to make hard decisions and discusses some of the 
alternatives he needs to consider. 

4 .1  M a p p i n g  o f  T i m e  

Time in Entity ~Classes: Entity classes that are part of the system model in the re- 
quirements specification are generally mapped into design data classes. However, the 
former are modelled through a declarative description of the allowable histories of their 
instances, while the latter need to be defined procedurally in terms of state invariants for 
their instances and operations that create, destroy and update them. The first question 
that needs an answer in generating a design for such entity classes is: what kind of in- 
formation, including historical information, should be kept in each possible state of the 
conceptual design model? What historical information needs to be maintained depends, of 
course, on the queries that might be asked. For example, the following query requires the 
maintenance of all instances, past and present, of the entity class TechnicalMeetings. 

Which technical meetings pertain to the project daida? 

As indicated earlier, Telos provides for the representation of both history time (i.e., 
the history of the application) and belief time (i.e., the history of the knowledge base) 
through the association of two intervals to every Telos proposition. 

To represent temporal information in the design, we need first define in TDL the entity 
class TimeInterval  whose instances are the time intervals used in the system: 

ENTITY CLASS TimeInterval WITH 
UNCHANGING 

from: Date; 
CHANGING 

to: Date; 
UNIQUE 

id(from, to) 
END 

Two useful concepts for conceptual design of databases with temporal information 
can be adopted from temporal databases [Snodgrass86], [Snodgrass87]: validity time or 
existence period which represents the time when the stored information was true (history 
time, in our terminology) and transaction time which represents the time the information 
was inserted in the database (belief time). Accordingly, every (design) data class may 
have two new temporal attributes, va l id i tyTime and t raasact ionTi=e:  
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ENTITY CLASS Employee ISA Person WITH 

UNCHANGING 

eName: String; 

CHANGING 

eAddress: Address; 
works0n: SET OF Project ; 

salary: Amount ; 

validityTime: Timelnterval; 

transactionTime: Timelnterval ; 

UNIQUE 
id: (eName) ; 

END 

For requirements entity classes with invariant extensions, the value of validityTime 
is AllTime. Moreover, this attribute needs to be classified as unchanging. Likewise, 

transactionTime might be declared as unchanging and its value might be set to co or 

to the time system operation was launched. 

AGGREGATE CLASS Month WITH 

UNCHANGING 

month: 1..12; 

validityTime: [AllTime] ; 
transactionTime: [SystemLaunchTime] ; 

INVARIANT 
: (ALL x IN Month)(SOME y IN Date) 

(x.transactionTime = [y..31/12/2000]) ; 

{* System must be launched between y and 

31/12/2000 *} 
END 

Some objects represented in an information system will be inactive in the sense that 
their validity time has passed (consider, for example, a project that has terminated). Such 
objects may still be needed, depending on expected usage of the information handled by 
the system under development. Relevance period is another useful concept, intended to 
provide precisely this information. If the relevance period of an object is greater than 
its validity time, then past information must be maintained for that object as long as 
it is its relevance period. One way to structure inactive objects is through "conceptual 
archives": inactive objects are classified according to the day, week, month or year of 
their validity time, in addition to their other classifications. Alternatively, inactive ob- 
jects might be classified according to their relation to the present. For instance, inactive 
instances of the class Meet ing may be partitioned into one year collections through classes 
LastYearMeetings, TwoYearAgoMeetings, etc. Obviously, this scheme requires update 
operations. Note that in the DAIDA framework these issues are only dealt with at the 
design level and will lead to design objects, including data, transaction and script classes, 
which don't have requirements specification counterparts. 

Time in Activity Classes: The declarative representation of temporal constraints in 
activities needs to be transformed usually into a more fine-grained state-transition view 
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in the conceptual design. Since TDL treats transactions as atomic database operations, 
the transcations can only be used as design objects for activities with uninterruptible sub- 
activities. Interruptible subactivities include communication, either between activities or 
between the system and end users. As with inactive entities, information about activities 
may have to be maintained after their termination. 

Since scripts are long-term events, one may want to store in the information sys- 
tem not only an inactive script's validity time, but also the history of state and transi- 
tion activations/de-activations. Transitions can be treated as generalized transactions for 
which the system maintains the input which triggered the transition, the goals (output) 
performed by the transition and the transition time interval. 

As in the case of data classes the notion of relevance period must be applied here to 
prevent the rapid growth of the amount of past information. 

4.2 Mapping of Assert ions 

In general, a temporal assertion in the requirements specification will have to be analysed 
and possibly reconfigured in order to be integrated in the system design. Here are some 
basic alternatives: 

From Telos Assertions to TDL Assertions: One of the many difficulties here is that 
each entity in the constraints of the system model has a time interval associated with 
it, whereas each data class in the assertions of the conceptual design model is associated 
with a validity time interval which is defined in terms of two time points. For instance, 
the following constraint of the system model requires that all ezpenses of an employee 
should occur during a meeting of a project in which he is involved'. 

(Forall x/&Expense)(Exists mt/&Meeting) 
(x.meet = rot) and (x during mr) and 
(mt.proj subset0f x.participant.proj) 

This constraint might be mapped into 

(ALL x IN Expense)(SOME mt IN Meeting) 
(x.meet = rot) AND 
AFTER(x. validityTime, from, mt.validityTime, from)• AND 
BEFORE(x.validityTime.to, mt .validityTime.to) AND 
(mt.proj SUBSETOF x.participant.proj) 

in TDL. Note that the resulting formula is considerably more opaque, due to the 
• mapping of intervals into time points. 

From Telos Assertions to Satisfaction by Design: Rather than transforming a con- 
straint in the system model into assertions in the design, the developer may choose to 
enforce the constraints through system operations and interactions with its environment. 
Consider, for example, 

3 3 4  



(Forall x/&GenExpenseReport) 
(x meets this.beginTime + 6mo) 
(Exists ylGenExpenseReport) (x 

o r  

meets y + 6mo) 

which requires, roughly speaking, that expense reports be generated every six months. 
Naively, this constraint might be enforced by a script transition that fires every six months 
and generates a report. However, having the system generate a report is only useful when 
the system has full information on the subject matter. Accordingly, a more pragmatic 
enforcement of the constraint may involve a cooperative scheme between the system and 
users where the system reminds them about an impending deadline, gets the information 
it needs r and proceeds to generate the report. Moreover, the designer may want to add 
constraints at the requirements or design level to facilitate this information-gathering 
process for the system. For instance, he may add the constraint that no expense receipt 
should be submitted more than a month after the expense actually occurred (requirements 
level) or no expense summary can be inserted in the system more than a month after the 
relevant meeting took place (design level). Alternatively, the system may be designed to 
send out periodic reminders, keep track of meetings - past, present and forthcoming - 
and send out specific reminders or use some other scheme. 

Note that in all of the above scenarios, requirements constraints are enforced by the 
structure of transactions or scripts and even by the (helpful) behaviour of the environment. 

4 . 3  M a p p i n g  o f  G e n e r a l i z a t i o n  a n d  C l a s s i f i c a t i o n  H i e r a r c h i e s  

Modelling the world is generally considered a more difficult task than designing a system. 
Telos recognizes this by offering levels of metaclasses intended to help the user define the 
concepts that are most appropriate for the modelling task at hand. TDL, on the other 
hand, is built around a fixed set of concepts for conceptual system design and has no use for 
metaclasses. To deal with this difference, all information associated with a requirements 
specification beyond the simple class level needs to be collapsed down to simple classes. 
This collapsing process can be complicated by the presence of generalization hierarchies 
at metaclass levels. 

When dealing with a generalization hierarchy at the metaclass or higher levels, we 
have to suppress the hierarchy into some metaclass definitions and then have to map the 
resulting classification hierarchy. In the first step, a class B inherits all attributes from a 
class A (at a higher level in the generalization hierarchy) and becomes class B'. We may 
keep class A as is, or we may remove it if we know that it will never be instantiated. In 
the second step, corresponding classes at a lower level inherit attributes from B', thus 
eliminating the generalization. We eventually have only classification hierarchies that 
need to be mapped to TDL. 

Elimination of classification hierarchies implies the loss of the ability to talk about 
sets of classes. Therefore, we have to explicitly associate semantics with them. The 
methodology employed allows to suppress classification hierarchies by explicitly defining 
all the knowledge, included in the description of a metaclass, in the instances of the 
particular metaclass. 

rObviously, this is still an idealization of what happens within an organization 
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5 Current  Status  and Conclusions  

This paper proposes a novel framework for the generation of information system designs 
from given requirements specifications. The framework is based on a number of premises. 
Firstly, it adopts the DAIDA architecture which relegates different classes of decisions to 
different stages of the software development process. Secondly, it assigns a particular role 
to the mapping assistant in the software development process which involves primarily 
constraint enforcement and suggestion of basic alternatives. Thirdly, it employs a knowl- 
edge engineering approach for the mapping assistant, whereby the relevant knowledge 
sources are identified and their role in the performance of the mapping task is formally 
characterized and embedded in the framework's control regime. Finally, a single knowl- 
edge representation language is used as an appropriate linguistic vehicle for capturing all 
types of knowledge relevant to the mapping task. 

The implementation of IRIS described in this paper is part of an effort to develop a 
prototype of the DAIDA environment. This prototype has already been demonstrated and 
is currently being extended and refined. It runs on SUN workstations and is implemented 
on top of BIM-Prolog, where the windows and graphics interface have been implemented 
in SunView and Pixrect. 

The prototype implementation of the mapping assistant only employs approximately 
30 dependency types at this point. We estimate that a reasonably complete implemen- 
tation will require 50 -100 such types, in addition to analogous sets of decomposition, 
satisficing and refinement methods. 

Some of the limitations of the implementation are due to the status of the Telos and 
TDL implementations. In particular, in the current implementation of Telos, performance 
degrades quite rapidly with the size of the knowledge base. The implementation of TDL 
supports the insertion, retrieval and update for data and transaction classes. Moreover, 
most of the assertion language has been implemented, while scripts and functions have 
only been partly implemented. The Telos and TDL implementations consist of 3 and 
1.5Mb of Prolog code respectively and require more than 35Mb of virtual space to run 
efficiently. 

Future plans for the implementation of IRIS include adding more dependency types 
and decomposition, satisficing and refinement methods. Also, extending and improv- 
ing the implementations of Telos and TDL. Finally, refining the control structure which 
utilizes these knowledge sources to guide the generation and the justification of a design. 

Bib l iography  

[Allen81] James F. Allen, A General Model of Action and Time, Proceedings 7th IJCAI, 
Vancouver, BC, Canada, 1981. 

[Barron82] John Barron, Dialogue and Process Design for Interactive Information Sys- 
tems Using Taxis, In Proceedings SIGOA Conference on Office Information Systems, 
Philadelphia, PA, SIGOA Newsletter, Vol. 3, Nos 1 and 2, pp. 12-20, 21-23 June 
1982. 

336 



[Borgida85] A. Borgida, Features of Languages for the Development of Information Sys- 
tems at the Conceptual Level, IEEE Software, Vol. 2, No. 1, Jan. 1985, pp. 63-72. 

[Borgida87] Alex Borgida, John Mylopoulos, Joachim W. Schmidt and Eric Meirlaen, 
Final Version of TDL Design, Esprit Project DAIDA (892), deliverable DES1.2, 
Sept. 1987. 

[Borgida89] Alex Borgida, Matthias Jarke, John Mylopoulos, Joachim W. Schrnidt and 
Yannis Vassiliou, The Software Development Environment as a Knowledge Base 
Management System. in J. W. Schmidt and C. Thanos (Editors), Foundations of 
Knowledge Base Management. Springer-Verlag, 1989. 

[Chung84] Lawrence Chung, An Extended Taxis Compiler, M.Sc. thesis, Dept. of Com- 
puter Science, University of Toronto, Jan. 1984. Also CSRG Technical Note 37, 
1984. 

[Chung89] Lawrence Chung, Panagiotis Katalagarianos, Manolis Marakakis, Michalis 
Mertikas, John Mylopoulos and Yannis Vassiliou, From Information System Require- 
ments to Designs: A Mapping Framework, Technical Report FORTH/CSI/TR/1989/020 
Institute of Computer Science - FORTH, Heraklion, November 1989. 

[Findler79] Findler, N. (editor), Associative Networks, Academic Press, 1979. 

[Greenspan84] S. Greenspan, Requirements Modelling: The Use of Knowledge Repre- 
sentation Techniques for Requirements Specification, Ph. D. thesis, Dept. of Com- 
puter Science, University of Toronto, 1984. 

[Hayes87] I. Hayes (editor), Specification Case Studies, Prentice Hall International, En- 
glewood Cliffs N J, 1987. 

[Hull87] R. Hull and R. King, Semantic Database Modelling: Survey, Applications and 
Research Issues, ACM Computing Reviews 19, No. 3, Sept. 1987. 

[Jackson83] Michael Jackson, System Development, Prentice-Hall, 1983. 

[Jarke86] M. Jarke (ed), Development of Advanced Interactive Data-Intensive Applica- 
tions (DAIDA}, Global Design Report, Esprit-Project 892, Sept. 1986. 

[Jarke89] Matthias Jarke, Manfred Jeusfeld, Tomas Rose, A Software Process Data 
Model for Knowledge Engineering in Information Systems. Information Systems, 
Vol.14, No.3, Fall 1989. 

[Katalagarianos89] Panos Katalagarianos, Manolis Marakakls, Michalis Mertikas, Yan- 
his Vassiliou, CML//Telos - TDL Mapping Assistant:' Architecture and Development, 
Esprit Project 892 (DAIDA), del. DES2.3, Institute of Computer Science, Founda- 
tion for Research and Technology, Heraklion, Crete, Greece, Febr. 1989. 

[Koubarakis89] M. Koubarakis, J. Mylopoulos, M. Stanley and A. Borgida, Telos: Fea- 
tures and Formalization, Technical Report KRR-TR-89-4, Dept. of Computer Sci- 
ence, Univ. of Toronto, 1989. 

337 



[Mylopoulos86] The Role of Knowledge Representation in the Development of Speeifi- 
cations~ In H. J. Kugler (ed.): Information Processing, Elsevier Science Publishers 
B. V., North-Holland, 1986. 

[Roman85] Gruia-Catalin Roman, A Tazonomy of Current Issues in Requirements En- 
gineering, In IEEE Computer, pp. 14-21, Apr., 1985. 

[Schmidt88] J. Schmidt, H. Eckhardt, and F. Matthes, DBPL Report. DBPL-Memo 
111-88, Fachbereich Informatik, johann Wolfgang Goethe-Universitat, Frankfurt, 
West Germany, 1988. 

[Snodgrass86] Richard Snodgrass, Temporal Databases, Computer, September 1986, pp. 
35-42. 

[Snodgrass87] Richard Snodgrass, The Temporal Query Language TQuel, In ACM Trans- 
actions on Database Systems, 1987. 

[Stanley86] M. Stanley, A FormalSemanticsfor CML, M. Sc. thesis, Dept. of Computer 
Science, University of Toronto, 1986. 

[Zave81] Pamela Zave and Raymond T. Yeh, Executable Requirements for Embedded 
Systems, In Proceedings fifth International Conf. on Software Engineering, pp. 
295-304, 1981. 

338 


