
A Design Tool for Object Oriented Databases

Mokrane Bouzeghoub, Elisabeth M~tais

Laboratoire MASI, Universit6 P. et M. CurieCentre de Versailles,
45 avenue des Etats-Unis78000 Versailles

Farid Hazi, Laurent Leborgne

Infosys, 15, Rue Anatole France 92800 Puteaux La D6fense

Abstract:
This paper describes a design methodology for an object oriented database, based on a semantic

network. This approach is based on the assumption that semantic data models are more powerful

and more easy to use than current proposed object oriented data models. They are especially more

poweful in representing integrity constraints and various relationships. Object oriented data models

are generally based only on class hierarchies and inheritance, plus their ability to represent the

behaviour of objects. But this latter capability is generally provided through an algorithmic language

which cannot be considered as a conceptual language. In this paper, we combine the two categories

of data models and give a procedure on how to translate the conceptual model to the logical model.

1. Introduction

Like relational databases, the design of an object oriented database is a complex art which needs

many expertise in the domain. The simultaneous modeling of the structural aspect and the

behavioural aspect of objects increases the complexity of the design. The current object oriented data

models are mainly defined by a few basic constructors (like the tuple constructor and the set

constructor) and a taxonomy of objects (i.e. hierarchy of classes and inheritance). The power of

object oriented data models is highlighted by their ability to describe the dynamic behaviour of the

objects (methods). However, as generally proposed in the object oriented database systems, this

dynamic description is made in a procedural language; this fact makes the specification of the

methods too difficult at the conceptual level. Another weakness of current object oriented data

models is that, except through methods, they do not easily permit to specify integrity constraints on

the objects.

This work was partly supported by GIP/ALTAIR, PRC/BD3 and INFOSYS

365

Except for the dynamic aspect, the expressive power of semantic data models is stronger than

that of object-oriented data models. Various relationships and integrity constraints can easily be

specified. Class hierarchies and inheritance are generally defined in the same way. The dynamic

aspect can be fulfilled by introducing the concept of behaviour in the semantic data models. In some

sense, this was already done in the AI domain by the concept of script which has been developped

to enhance the expressive power of semantic networks and frames. We follow the same approach

and describe the behaviour of a semantic data model by means of production rules. This kind of a

declarative language permits to avoid the complexity of procedural languages which are generally

used in object oriented data models. The behaviour of each object in the semantic data model will be

described by one or several rules expressing either integrity constraints or any management rules

concerning objects.

A large number of database design tools are based on semantic models. Secsi is one among

others [BOUZ 85][BOUZ 86]. Many experience we got from this previous project Secsi (e.g.

interactive acquisition of knowledge, completeness of specifications, consistency checking) is

reused in the new domain of object orientation.

This paper highlights on one hand the object-oriented database design methodology we have

developped, and on the other hand the design tool which supports this methodology. This

methodology is based on two design levels: a semantic object oriented level and an operational

object oriented level. The process of interactive acquisition, completeness and consistency checkings

of the behavioural rules is particularly emphasized in the first level. At the second level, we use as

an operational object oriented model the 0 2 model, which was developed by Altair project [BANC

87]. Then a mapping process between the two models is proposed. Besides the data structure

mappings, the transformation of a semantic object oriented schema into an operational object

oriented schema consists, among others, in the generation of procedural methods (C written) from a

declarative language specification (production rules). A design tool prototype based on this approach

has been developed and demonstrated [BOUZ 89].

Secsi is a database design assistant which is based on two models: a semantic data model,

called Morse, and the relational data niodel. The semantic data model is built upon the usual

concepts of aggregation and generalization which were refined in more basic constructors:

aggregation of atomic objects, aggregation of molecular objects, classification of objects and

generalization of classes. To enhance the semantic power of this model, several constraints are

defined: domains, keys, cardinalities, dependencies, intersections and disjunctions.

366

2. The Semantic Data Model

A semantic netwok is an oriented diagram where the nodes represent real world objects and the arcs

represent semantic relationships between these objects. In addition, constraints can be deffmed over

these nodes and arcs [BOUZ 84]. In the following, such a semantic network data model is

designated by the name Morse. The following subsections detail the different concepts used in

Morse.

2.1. The objects of the model

An object is a generic term to designate the different real world individuals refered to in Morse

schemas. We distinguish four categories of objects: in one hand instances of atomic objects (IA)

and instances of motdcular objects (IM), in the other hand classes of atomic objects (NA) and

classes of molecular objects (NM). Then, in the following, we use the term object in a generic

way, and whenever necessary, we use the more specific term.

The distinction between atomic objects and molecular objects permits to highlight their

structural links for a better specification of the corresponding constraints. In traditional databases,

classes of atomic objects are practically never used; files containing only one field (or one column

relation) is generally considered as irrelevant to the application. Database operations (retrieve, insert,

delete) are generally defined over classes of molecular objects (fde, relation). Then, in the classical

data models, atomic objects exist only as properties or values to characterize molecular objects. In

semantic data models and in object oriented data models, atomic objects can exist (and then be

identified) independently of the molecular objects to which they are related.

Atomic objects have values taken from basic domain such as: integer, real, boolean and string.

The set of all atomic values in all domains are refered to by the name VA. Molecular objects have

molecular values which are composed from the corresponding atomic objects which constitute the

molecular object.

2.2. The semantic l inks

Semantic links are basic binary relationships between the different categories of objects mentioned

above. These binary relationships formalize the well-known concepts of aggregation and

generalization [SMIT 77]. Specific refinement of these concepts are introduced to take into account

the distinction between atomic objects and molecular objects. The aggregation concept is refined as

atomic aggregation and molecular aggregation. Generalization is refined as instance generalisation
and class generalization.

367

a) The atomic aggregation (or aggregation of atomic objects) permits the construction of a

new molecular object X by juxtaposition of a sequence of atomic objects A 1...A n which are

generally, but not necessarily, of different domains. The molecular object is related to each of its

atomic components by a couple of binary arcs a(Ai,X) and p(X,Ai) which represent the reverse

directions of the same binary relationship relating a molecular object to its atomic component.

a (Number, VEHICLE), p (VEHICLE,Number),

a (Type, VEHICLE) , or p (VEHICLE, Type) ,

a (Power, VEHICLE), p (VEHICLE, Power),

a (Color, VEHICLE) . p (VEHICLE, Color) .

b) The molecular aggregation (or aggregation of molecular objects) permits the construction

of a new molecular object Y by juxtaposition of a sequence of other molecular objects X1...X n.

Each semantic relationship is represented by a couple of binary arcs r(Xi,Y) and o(Y,X i) which

represent the reverse directions of the same binary relationship which relates two molecular objects.

r (VEHICLE, ORDER) , or o (ORDER, VEHICLE) ,

r (CLIENT, ORDER) . o (ORDER, CLIENT) .

c) The instance generalization (or generalization of instances) is often called classification.

It permits to build a new class of object instances X by union of other object instances 01. . .O n. It's

a way to define a class by extension. As the amount of objects in a given class could be very high,

this abstraction is not often used in database schemas; then all schema objects are considered as

classes defined intensionaly by their basic domains or their aggregations. This kind of abstraction is

represented in the semantic network by the pair of arcs c(Oi,X) and i (X,O i) (for

classification/instanciation) which represent the reverse directions of the same binary relationship.

C (CI, Color) i (Color, Cl)

c (C2, Color) or i (Color, C2)

c (C3, Color) i (Color, C3)

c (Vl, VEHICLE) i (VEHICLE, v I)

or

c (Vn, VEHICLE) i (VEHICLE, v n)

d) The class generalization (or generalization of classes) permits to build a new class of

objects X as a union of other classes X1...X n by concentrating only on their common properties

(components). This kind of abstraction is represented by a pair of arcs g(Xi,X) and s(X,X i)

(generalization/specialization) which represent the reverse directions of the same binary relationship.

These arcs allow to build hierarchies of classes.

368

g(CLIENT, PERSON),
g(AGENT,CLIENT),
g(PRIVATE_PERS,CLIENT),

s(PERSON, CLIENT),
s(CLIENT,AGENT),
s(CLIENT,PRIVATE_PERS).

The inheritance is one of the interesting properties of generalization hierarchies; each atomic or

molecular component of an object X can be transfered by inheritance to objects X1...Xn, if these

latters are sub-classes of X. Inversely, each instance of a sub-class is an instance of its

super-classes. We say that components of objects propagate toward the leaves of the hierarchy

whereas the instances propagate toward the root(s) of the hierarchy.

As for all abstractions there are two equivalent representations (equivalent reversed arcs), we

use only one specification which subsumes the other (for example p, o, c and g) except if constraint

specification is needed for the implicit arc.

Nu ' Age

p[1,1]

fd ~ ' ~ Turnover

Fi~.l: An example of a semantic network

2.3. Integrity constraints

Different integrity constraints can be specified in a Morse semantic network to enhance its capability

to capture more meaning from the real world. Among these constraints, we can mention domains,

cardinalities, functional dependencies, keys, intersection and disjunction of classes, etc. In the

semantic network, some of these constraints are defined over nodes, oth¢rs are defined over arcs.

The constraints are specified either as a complementary information of binary arcs or as new

predicates. For example, cardinality constraints are expressed as complementary information over

a/p arcs and rio arcs, while other constraints like functional dependencies are represented by a new
fd arc:

369

a(Number, VEHICLE,[I,I]),
a(Type,VEHICLE, [I,N]),
a(Power,VEHICLE, [0,N]),
a(Color,VEHICLE, [0,N]).

and

r (VEHICLE, ORDER, [0, 1]),
r (CLIENT, ORDER, [I, N]).

and

fd(VEHICLE, lhs(Type),rhs(Power))

p (VEHICLE,Number, [I, i]),
p (VEHICLE, Type, [i, I]),
p (VEHICLE, Power, [i, i]) ,
p (VEHICLE,Color, [1,3]) .

o (ORDER, VEHICLE, [i, i0]),
o (ORDER, CLIENT, [i, I]) .

Graphically, a given semantic network can be represented as portrayed in figure 1.

3. T h e O b j e c t O r i e n t e d D a t a M o d e l

The 02 data model belongs to the category of the so-called object oriented data models [LECL 87].

Then its basic concepts are objects and types, type constructors and type hierarchies. The data

manipulation language could be the C language with embedded 0 2 expressions (called CO2)

[HAUX 88] or an SQL like declarative query language (called LOOQ).

3.1. Objects and types

In the 02 data model, an object is composed of an identifier (the name of the object) and a value.

Values could be either: (i) atomic values (integers, reals, booleans, strings), for example: (i 1,22),

(i2,3.14); (ii) tuple values, for example (i 3, [name'"John",age:22]); and (iii) set values, for

example (i4,{red, black, green}). Objects can be defined by construction using tuple ([...]) and set

({... }) constructors. For example:

(i 5 , [n a r a e : " J o h n " , a g e : 2 2 , v : i 6]) is an object having a tuple value,
(i 6 , {Vl , v 2 , v 3 }) is an object having a set value.

Objects can mutually reference each other. For example,

(i7, [name:"John", wife:i8]),

(i8, [name:"Mary", husband:i7]).

Intuitively a class is a mean for representing a set of objects with their behaviour. A class is

composed of two parts: (i) a type which contains the structure that characterises all the instances of

the class, (ii) methods which contain operations which will be applied to these instances. A class

may have a basic type (integer, real, boolean, suing) representing atomic objects, a tuple type

representing objects with tuple values or a set type representing objects having set values. The

following expressions are examples of classes :

370

Person = [name : string, age : integer]

Employees = {p : Person}

The tuple and set constructors could be composed to create more elaborated types (e.g. sets of

tuples or tuples of sets). For example:

Person = [name : string, age : integer, vehicles : { [number : integer, color : string] }]

The 02 data model makes a clear distinction between identified objects and non identified

objects. The formers can be stored and manipulated independently, while the latters exist only as

property values of other objects. For example, in the following specification, persons and vehicles

could be manipulated independently:

Person = [name : string, age :integer, vehicle :Vehicle]

Vehicle = [number :integer, color : string]

But in the following example, the object vehicle exists only as a composite attribute value of person:

Person= [name:string,age:integer, vehicle: [number:integer,color:string]]

The object identity makes possible the sharing of objects. For example:

Person = [name:string, age:integer, vehicles:Vehicles]
Vehicles = {[number:integer, color:string]}

Garage = [code:string, address:string, vehicles:Vehicles]

where Person and Garage may share same objets of the class Vehicles. A partial order between

types defines a hierarchy of types within which the inheritance concept permits to transfer

components from one type toward its subtypes [LECL 88].

A method is a procedure which is associated to a type in order to describe the behaviour of the

instances of this type. Methods introduce the notion of encapsulation which permits the

manipulation of objects without any knowledge about their structure, nor about the internal code of

the procedures corresponding to these methods.

3.2. Programming in CO 2

The CO 2 language is an embedded database language (CO2) into a procedural host language (C)

[HAUX 88]. Besides the usual programming of algorithms, it permits to specify and access

database objects. Objects are manipulated through methods. A method is characterized by its

signature (its name, its type and the type of its parameters) and its body (procedure). The following

example shows the declaration of types and the programming of methods in CO2:

371

add class Person with extension /* type declaration */
type tuple(name:string, age:integer,address:string, children:set(Person))

add class Agent inherits Person
type tuple (code:string, salary:integer)

method category: string is public

body category:string in class
{ if (self->salary > 50)

return("VIP");
}

Agent C02

/* hierarchy of classes */

/* method declaration */

/* method procedure */

The keyword inherits defines a hierarchy of types. The keyword with extension creates a

named value which contains the instances of the class and then permits set operations on this class.

The keywords type and method respectively define the object data structure and its associated

method signature. Its following keyword is public makes the object-integrity method visible from

anywhere. The keyword body introduces the procedure which implements the method. Its

following keyword in class CO2 defines the class for which this body is defined; this is useful to

solve ambiguities of names, as method bodies can be specified independently of the class

description. The brackets {} delimite the C source statements of the procedure.

The definition of a database schema in CO 2 needs the knowledge of the objects structure, the

status of objects, i.e. identified object or non identified object (value), and the sharing of the

objects.

4. Mapping from the Semantic Level to the Operational Level

The CO 2 model describes both static aspect (data structures) and dynamic aspect (methods).

Relationships between objects or object classes are not represented by a specific concept; but they

are represented by a uniform way based on objects composition and objects sharing. As in the

relational model, references are the unique way to represent relationships between objects. Integrity

constraints are not considered as specific concepts of the model; they are defined in a uniform way

as any procedure describing the behaviour of an object. The object identity allows to make a clear

distinction between objects having their own existence, and values which are only relevant when

characterizing other objects. The object identity is represented in CO 2 by different syntactic forms.

The semantic data model Morse concerns only the static aspect. The different categories of

aggregation arcs allow to specify different types of relationships between objects. Integrity

constraints are represented as declarative assertions on the data structure. Objects identity is

explicitely handed only for molecular objects. Indeed, in the traditional databases, we make a strict

372

dichotomy between molecular objects which are generally identified with an associative manner

using attributes, and the atomic objects which exist only as attribute values for molecular objects.

In the following we are only interested on the mapping from Morse to CO 2 and not for the

reverse mapping. First we consider the structural mappings between the two models, then we study

the representation of constraints with methods, and f'mally the general mapping process. This plan

is made only for the soundness of the paper; in fact structural mapping rules often depend on the

integrity constraints [BOUZ 88].

4.1. The mapping between objects

An atomic object defined in Morse is equivalent in 02 to either an identified atomic object or to an

atomic value (non identified object) inside an other object. A molecular object defined in Morse is

equivalent to either an identified tuple structured object or to a tuple value in 02. A class of objects

defined in Morse is partly equivalent to a class of objects defined in 02. Indeed, and as stated

before, Morse classes describe only the static aspect of the objects, while 02 classes describe their

behaviour too, thanks to methods. Figure 2 summerizes the correspondance between the Morse

objects and the 02 objects.

MORSE CONCEPTS 02 CONCEPTS

Atomic object

Molecular object

Class

Subclass
/nstance

Object identifier

Atomic object / atomic value

Structured object / tuple value

Class

Subclass
Object
Object identifier

Fig. 2: Correst3ondance between the Morse objects and the 02 objects

4.2. The mapping between constructors

Both atomic and molecular aggregation defined in Morse are equivalent to the tuple constructor of

the 02 model. More precisely, we have to include what is considered as domain constraints in

Morse to obtain what is considered as attribute basic type in 02 . For example, the following Morse

373

specification:

p (PERSON, Name)
p (PERSON, Age)
o (PERSON, Address)
p(Address, Number)
p(Address, Street)
p(Address, Postcod)

will be mapped into 02 as:

dom(Name,string)
dom(Age, integer)

dora (Numbe r, int ege r)
dom (Street, string)
dom (Postcode, integer)

Person=[Name:string,Age:integer,Addr:Address]
Address=[Number:integer, Street:string,Postcod:integer]

which can be described in CO 2 by the following statements:

add

add

class Person
type tuple (Name:string,Age:integer, Addr:Address)

class Address
type tuple(Number:integer, Street:string,Postcod:integer))

if we consider that all of Name and Age are values of the Person (thus they are not identified), but

the Address is an object by itself (thus it is identified). Addr is called a reference; it is considered as

an attribute of Person which references an other object, i.e. Address.

The classification/instanciation defined in Morse is partly equivalent to an 0 2 class defined

wi th e x t e n s i o n . In fact the Morse abstraction can define a class only by extension, without

necessarily describing its structure. The generalization/specialization is equivalent to the inheritance

hierarchy in 02. In Morse, a given class can be defined by generalization from other classes even

the structures of these latters are unknown. Inversely, a Morse subclasse can be defined as a

restriction of a superclass, but without any refinement on its structure. This makes the

generalization/specialization more general than a partial order of types which is defined in 02.

MORSE CONCEPTS 0 2 CONCEPTS

Atomic aggregation

Molecular aggregation

Classification / Instanciation

Generalization / Specialization

Tuple constructor

Tuple constructor

Class defined by extension

Inheritance hierarchy

Fig. 3: Mapping between the Morse and the O2.constructors

374

The inheritance is defined in Morse as a logical property which propagates components and

constraints of generic classes to their subclasses. In the 02 model, there is a uniform formalisation

of hierarchies of types and inheritance (partial order of types). Figure 3 summerizes the different

mappings between the Morse constructors and the 02 constructors.

4.3. The mapping o f the constraints

Semantic integrity constraints are useful for many reasons: (i) to check the consistency of the object

structure and values, (ii) and possibly to assist in the decision process which determines whether a

Morse object coincides or not with an 02 object. Except for the usual domains which are

represented by basic types in O 2 (integer, real, boolean, string), all the other Morse integrity

constraints are represented by methods in the 02 model. In the following, we illustrate this latter

case with cardinalities and functional dependencies. Methods which implement integrity constraints

are particular in the sense they are not directly invoked by the users but by other methods which

guarantee the encapsulation of the concerned object. Figure 4 summerizes the different mappings

between the Morse constraints and the 02 concepts.

MORSE CONCEPTS

Domain

Cardinalky

functional dependency

key

intersection / disjonction

0 2 CONCEPTS

basic type / method

set constructor + method

method

method

method

Fig. 4: Mappings between the Morse constraints and the 02 concepts

a) Methods implementing cardinality constraints:

Formally, cardinalities characterize binary relationships (alp and rio arcs) by specifiing the

frequence of object participation in a given binary relationship. More precisely, a cardinality is a

couple of values [m,n] which respectively specify the minimum and the maximum number of a

given relationship instances to which the same object could participate. Cardinalities where n=l are

called monovalued cardinalities and those where n>l are called multivalued cardinalities. In the

following, we study the methods by which we will implement these constraints. As we have

375

several situations, we will only focus on three examples.

Case 1: n(X.Y.[1.1l) : which specifies that for a given instance of X, there is only one

instance of Y. For example:

p(PERSON, Name, [i, i]) Dom(Name, string)
p(PERSON, Age, [i,i]) Dora(Age, integer)

will be implemented into 0 2 as:

add class PERSON
type tuple (Name:string,Age:integer)
method Nulle value:boolean

body Nulle_value:boolean in class PERSON CO2
{ if((! (self->Name == (02 string) NULL))

&& (! (self->Age == (02 integer) NULL))
{return (true);) else return (false);

)

Case 2: o~X.Y.fI.N]):

Y. For example:

o(PERSON, Address, [I,N])
p(Address, Number, [i,i])
p(Address, Street, [I,i])
p(Address, Postcod, [i,I])
p(Address, Town, [i,i])

will be mapped into 0 2 as:

which specifies that for a given instance of X, there is N instances of

Dom(Number, integer)
Dom(Street, string)
Dom(Postcod, string)
Dom(Town, string)

add class PERSON
type tuple(Addr:setof(Address))
method Bounded_set(min:integer, max:integer):boolean

add class Address
type tuple(Number:integer,Street:string,Postcod:string, Town:string))

body Bounded_set(min:integer, max:integer):boolean
in class PERSON CO2
{ 02 set(Address) x;

x = (self->Addr);
if ((min =< count(x)) && (count(x) =< max))
{return (true);} else return (false);

}

Case 3: U n i a u e va lue (key): If we specify cardinalities for the reverse arcs of the semantic

network, we obtain other kind of constraints like unique values or keys:

a (Name, PERSONNE, [i, i]) .

This constraint can be represented into CO 2 as follows:

376

add class PERSON with extension

type tuple (Name:integer)

method Unique_value:boolean

body Unique_value:boolean in class PERSON

{ 02 PERSON p;

integer RES;

RES = I;

C02

for (p in PERSON when p->Name == self->Name)

{RES = 0};
if (RES == i) {return (true);} else return (false);

b) Methods implementing functional dependencies

In the relational data model, functional dependencies are used to represent elementary facts between

attributes, and then serve as a basis for the normalisation process. In the Morse semantic data model,

functional dependencies are just considered as constraints between atomic objects within a molecular

object. In an object oriented data model, these constraints can be implemented as methods checking the

consistency of the object values. For example,

p(VEHICLE,Number)

p(VEHICLE,Type)

p(VEHICLE, Power)

can be implemented as following in 02:

df(VEHICLE,lhs(Type),rhs(Power))

add class VEHICLE with extension

type tuple(Number:integer, Type:string,Power:integer)
method Funct dependency : boolean

body Funct dependency: boolean in class VEHICLE CO2
{02 VEHICLE v;

integer RES;

RES = i;

for (v in VEHICLE when (strcmp (self->Type, v->Type))

&& !(self->Power == v->Power))

if
}

{RES = 0});

(res == i) (return (true);} else return (false);

We shall see later that they can be used in the similar way of the relational model to what can be

considered as object definition.

4.4. The object identity and the object sharing

In the Morse semantic data model, everything is considered as an object. Each object has a unique

representation, then objects can be shared between different other related objects. In the 0 2 object

oriented data model, there are objects and values; objects are sharable while values are not. So,

377

when mapping a Morse schema into an 02 schema, we have to decide whether a Morse object can

be considered as an 02 object or as an 02 value. This decision mainly depends on the user's desire

in the way to implement his database. He can arbitrarily decide whether a given Morse object is an

02 object or value. For example, for the mapping of the following Morse schema (figure 5), he can

envision many solutions:

I,N]

[I.N" p~l,1] p[l~l] [~

Name Age / / % \/~--~/~n

Number Street Postcod Town

Fi~.5: Morse obiects

Solution 1: one 02 object PERSON describing the whale Morse structure:

PERSON=[Name:string, Age:integer,

Address:{[Number:integer, Street:string, Postcod:integer,Town:string]}]

AH other componenm are considered as values charactefi~ng a person.

Sohtion 2: Two 02 o~ects correspon~ng m the two Morse mo~cular objects:

PERSON=[Name:string, Age:integer, Addr:ADDRESSES]

ADDRESSES={[Name:integer, Street:string, Postcod:integer, Town:string]}

In this case each person's addr is a reference to a set of addresses.

Solution 3: Three 02 objects whose one is an identified set:

PERSONNE= [Name : string, Age : integer, addr :ADDRESSES]

ADDRESSES : {ADDRESS }

ADDRESS=[Name:integer, Street:string, Postcod:integer, Town:string]

There are two kinds of objects describing addresses: the first one (ADDRESSES) describes sets of

addresses, the second one (ADDRESS) describes tuples whose each corresponds to a given

address.

Solution 4: One 02 object ADDRESS corresponding to the whole Morse structure:

ADDRESS: [Number:integer, Street:string, Postcod:integer, Town:string,

378

P e r s o n : { [N a m e : s t r i n g , A g e : i n t e g e r] }]

In t h i s case , persons do not have any existence, they are just characterizing addresses.

There are many other solutions where we can consider that towns or telephones are

independant objects. To decide between all these solutions, a computer design tool can help in the

decision process by taking into account several heuristics derived from the following parameters:

Cardinality constraints defined over arcs adp and r/o of the semantic network: if the minimal

cardinality of one of these arcs is equal 0, then the origine object of the arc can exist

independently of the related one.

Functional dependencies defined between atomic objects of the semantic network: as in the

relational model, a set of functional dependencies can determine a group of Morse atomic objects

which may correspond to an 0 2 object. In this case, we can just highlight these groups but the

final decision remains to the human designer.

Keys defined for molecular objects: generally keys are used to provide an associative access to

objects. It is generally considered as an external way of identifiing objects.

Users'operations and general constraints defined on the Morse objects: basic operations like

insert, delete and update, can be considered as the main means to identify objects. We shall see

in the next section how these operations are defined in the Morse semantic data model.

4.5. The generator of the CO 2 code

The generator of CO 2 code is composed of a set of mapping rules which transform objects,

relationships and constraints of Morse toward objects and methods of 0 2 . As each Morse object

may satisfy one or several integrity constraints, each corresponding 0 2 object or value may satisfy

one or several methods called "constraint-methods". These latter methods are particular in the

sense they are activated by other methods which realize the encapsulation of the object. Then each

update operation on a given object should activate by message passing the set of constraint-methods

associated to this object. This set of constraints is called the "object-integrity". It can be itself

considered as a general consuaint-method associated to an object. Thus each update operation has

to know only one general constraint-method instead of knowing the set of all specific

constraint-methods.

The CO 2 code generator is composed of two parts: (i) one part generates the definition of the

object data structure and the cOnstraint-methods signatures, (ii) the other part generates the body of

the object-integrity method and the bodies of the corresponding specific constraints-methods. The

two parts consist of dynamicaly filling a predefined frame which is organized into slots containing

379

keywords of the CO 2 language (figure 6).

add class class_name_l

t y p e

m e t h o d

[inher i t s class__2] with

(component_l : type_l,

component_2 : type_2,

component._n : type_n)

e x t e n s i o n

method_signature_ 1

method_signature_n

b o d y signature_method_l in class

method body_l

b o d y signature_method_n in class

method_body_n

Fi~.6: The code ~enerator frame
v

class_..name_ 1 CO2

class._name_l CO2

An example of code generation could be the following:

add class PERSON
type tuple(Name:string,Age:integer,Addr:setof(ADDRESS))

with extension
method Integrity:set(string) is public

Nulle value:boolean
Unique_value:boolean
Bounded set(min:integer, max:integer) : boolean

body Integrity:set(string) in class
{ 02 set(string) ENS;

SetRes = set();
if (!([self Nulle_value]))
if (!([self Unique_value]))
if (!([self Bounded_set]))
return (SetRes);

)

PERSON C02

{SET += set ("Nulle_value") ; } ;
{SET += set("Unique_value");};
{SET += set ("Bounded set") ; };

Each object-integrity method (i.e. the method Integrity of the class Person in the previous

example) returns a set type value. This set (e.g. SetRes in the previous example) contains the names

of the constraint-methods which were not satisfied during the update operation. Depending on

wether this set is empty or not, the programmer can commit or not the update operation. For

example, we define a new insertion method which creates an object and assigns a value to each Of its

attributes. In the definition of this method, we must activate the corresponding integrity constraint

380

to be sure that the update is allowed with respect to the integrity constraints.

add method insert:boolean in class CO2 PERSON
body insert:boolean in class CO2 PERSON

{ 02 set(string) ENS

SetRes = [self Integrity];
if (SetRes == (o2 set(string)) set())

{PERSON += set(self)}; return (true);]
else { printf ("Integrity constraints not respected:

display (SetRes);
return (false);]

,,) ;

In the previous code generation, the cost of the integrity checking process is not considered.

Constraint-methods are specified in such a way they semantically correspond to the declarative

assertions of the semantic network. The experience in traditional databases has shown that integrity

checking is a very expansive process. If we want to avoid the multiple scanning of the same class,

we have to merge in the same procedure the different constraint-methods which have been defined

for this class. This problem is not addressed in this paper.

5. Extending the Semantic Data Model to Represent General Constraints

This section intends to extend the Morse semantic network to represent more generalized integrity

constraints. These general integrity constraints should be any first order logic formula whose

variables refer to the content of the semantic database. Before presenting this extension, let us give

a formal representation Of a semantic database as well as for its conceptual schema and for its

extension. This representation is not intended to represent real databases but just to give a formal

abstract representation in order to correctly specify integrity constraints.

5.1. The representation of a semantic database

A Morse database schema is composed of:

the list of names of all classes of atomic objects (i.e. instances of NA),

the list of names of all classes of molecular objects (i.e. instances of NM),

for each atomic object, its domain values (basic type),

for each molecular object, its data structure (i.e. the set of all its p/a and o/r arcs),

for each binary relationship (i.e. p/a and o/r arcs), its cardinalities,

for each multiple reference to the same component, the different roles played by the component
in the abstraction.

For Example:

381

i(NA, P_name,string)
i(NA, Age, integer)
i(NA, number,integer)
i(NA, Power, integer)

i(NM, PERSON)
i(NM, VEHICLE)
i(NM, CONTRACT)

p (PERSON,Name, [I, I] [I,N])
p (PERSON,Age, [i, I] [I,N])
p (VEHICLE, Power, [i, i] [0,N])
p (CONTRACT, Premium, [i, I] [i, i])

o (CONTRACT, PERSON, [1, 1] [1, N])
o (CONTRACT, VEHICLE, [i, 1] [I, 1])
g(CLIENT, PERSON)

As previously stated, everything in Morse is an object. Then each atomic or molecular object is

formally identified. The relationship between an atomic object identifier and its corresponding value

is represented by a specific predicate v. The relationship between a molecular object identifier and

its corresponding structured value is represented by a sequence of v predicates. This systematic

identification of all objects implies a systematic sharing of objects. Then values of objects are

represented only once. This identification permits also an independent manipulation of all object

classes. The generalization arcs (i.e. g/s) are not directly represented in a database extension. They

are captured by the inclusion of sets of identifiers with respect to the generalization hierarchy. In the

following is an example of extension of the previous database schema:

i(PERSON, PI) i(Name,Nl), v(Nl,dupond) i(Age,Al) v(AI,33)
i(PERSON, P2) i(Name,N2), v(N2,durand) i(Age,A2) v(A2,44)
i(PERSON, P3)

i(VEHICLE,Vl) i(Number, II) v(Ii,123) i(Power,Wl) v(WI,5)
i(VEHICLE,V2) i(Number, I2) v(I2,345) i(Power,W2) v(W2,7)
i(VEHICLE,V3) i(Number, I2) v(I2,345)

i (CONTRACT, CI) i (Premium, MI) v(Ml, 5500)
i (CONTRACT, C2) i (Premium, M2) v (M2, 6000)

p (PI, NI) p (Vl, II) o (Cl, PI)
p (PI, AI) p (Vl, WI) o (Cl, Vl)

p (CI,MI)

p (P2,N2) p (V2, I2) o (C2, PI)
p (P2, A2) p (V2, Wl) o (C2, V2)

p (C2,M2)

p (P3,N2) p (V3, I3)
p (P3, A2) p (V3, W2)

Obviously this representation is not defined for implementing real databases, but just as a formal

representation for a formal reasoning. It can be considered as an abstract representation of the

content of a given database. This representation permits a better understanding of the constraint

specifications, and provides a convenient framework for a CASE tool.

5.2. The representation of general integrity constraints

A general integrity constraint is a first order closed formula, restricted to only conjunction

connectors and at most only one implication symbole. The following expressions are allowed

382

constraints: P(X), P(X) & Q(Y), P(X) - - > Q(Y), P(X) & Q(Y) - - > R(X,Y). Variables can be

quantified existencially or universally. The universe of discourse in which these formulas are

interpreted is constituted as follows:

a set of constants: composed of (i) the union of atomic objects domains (VA), (ii) the union of

atomic objects identifiers (IA) and molecular objects identifiers (IM) and of (iii) the union of

class names of atomic objects (NA) and class names of molecular objects (NM),

a set of variables taking their values in the previous defined universe of discourse,

a set of predicates: composed of (i) all atomic and molecular aggregation relationships (i.e. p/a

and o/r arcs), (ii) instance generalization and class generalization relationships (i.e. c/i et g/s

arcs), and (iii) usual mathematic predicates: <, >, <, >, =, #.

For example, over the previous database schema, we can def'me a general integrity constraint which

states that if the vehicle power is greater than 10 and the person's age is less than 20, then the

contract premium is at least equal to 5000:

ICI: VP vc k/v VG VS VM 3VG 3VS 3VM
[i(PERSON, P) ^ itVEHICLE,V) ^ i(CONTRACT,C)

^ i(Age,G) ^ i(Power,S) ^ i(Premium, M)

^ o(C,P) ^ o(C,V)

^ p(P,G) ^ v(G,VG) ^ VG<20

^ p(V,S).^ v(S,VS) ^ VS>I0]

-->[p(C,M) ^ v(M, VM) ^ VM~5000].

We can also state that the age of every person is greater than 17.

IC2: VP 3G 3VG i(Person, P) ^ i(Age,G) ^ p(P,G) ^ v(G, VG) A VG>I7

As these constraints are specified using the same semantic arcs as for describing the static data

structure, they can be represented by a semantic network in which each variable or constant is

represented by a node. Variable nodes are considered as instances of object classes. The quantifier

corresponding to each variable is represented as a complementary information of the arc i relating a

variable to its class. For example, i(Person,x,~') describes a variable x universally quantified over

the class Person. As the order of the quantifiers is meaningful in a given formula, an indice is

associated with the quantifier. For example, i(Person,x,V,1). Finally, new binary arcs (inf, sup,

equ, einf, esup, diff) are added to the semantic network to represent the predicates: <, >, =, _<, >.

To give more meaning to this representation, we must complete each predicate to specify whether it

belongs to the left hand side or to the fight hand side of the rule representing the integrity constraint.

ICI : i (PERSON, P, ", !, left, ICI) i (VEHICLE, V, ", 2, left, ICl)
i (CONTRACT,C, -, 4, leftright, ICI) i (Age,G, ", 5, left, ICI)
i (Power, S, ", 6, left, ICI) i (Premium,M, ", 7, right, ICI)

o(C,P,left,ICl) 0 (C, V, left, ICI)

383

p (P, G, left, ICI)
p (V, S, left, ICl)
p (C,M, right, ICI)

v(G,VG, left,ICl)
v(S,VS,left, ICl)
v(M, VM, right, ICl)

inf(VG,20,1eft, ICl)
sup(VS,10,1eft, ICl)
sup(VM, 5000,right, ICl)

The following schema illustrates the representation of the constraint ICI. The lower part represents

the static data schema, the upper part represents the behavioral schema. In this latter one, we have

separated the rule left hand side part and right hand side part; although some nodes appear in the

both parts.

Fig.7; An exemple of rule representation

As for the database extension, this representation is an abstract representation for a better

understanding and consistency checking of integrity constraints.

5.3. The semantic object oriented language

The Morse language is a formal language to represent the detailed description of a conceptual

schema. This language is not intended to be used by end-users nor to implement real databases.

Consequently, we need two things: a friendly user interface to specify data structures and

constraints, and a real database managment system to implement the database schema. This

subsection describes the former requirement, the latter one is supported by the 0 2 system after

mapping Morse specifications into 0 2 specifications.

384

a) Specification of data structures

(1) Each set of p or o predicates which defines the structure of a molecular object class is replaced

by the following statement, if the structure is composed of atomic objects:

X (A 1 : dora I, ..., A n : dora n)

<=> i (NA, A 1 , dora 1) , ..., i (NA, An, dora n) , i (N-M, X)

P(X,A1), ..., p(X,A n)

or by the following if the structure is composed by molecular objects:

X(YI,...,Y n)

<=> O(X, Y1),..., o(X,Yn), i(NM, X)

or by the following statement if the structure is either composed of atomic objects and molecula
objects.

X (A 1 : dom 1, ..., A n : dom n, YI, ..., Ym)

<=> i(NA, Al,dOml), ...,i(NA, An,domn), i(NM, X)

P(X,A I), ..., p(X,A n)

O(X,Y 1) ,..., o(X,Y n)

If the cardinality constraints are specified, we shall have the following description:

X({Al:dOm 1} [aml,an 1] ,

--.t

A n:dOmn, [am n,an n],

{Y1}, [rml, rnl] ,

Ym, [rmn, rnn])

<=> i (NA, AI, dOtal), ..., i (NA, An, domn), i (NM, X)

p(X,AI, [1,N] [aml,anl]),

...e

p(X, An, [I,N] [amn, ann]),

o (X, YI, [1, I] [rml, rnl]),

...r

O (X, Ym, [I, i] [rmn, rnn])

(2) Each set of generalization arcs can be declared as follows:

g (X, Y) <=> X : Y
g (X, YI) ,..., g (X, Yn) <=> X:YI, ..., Yn
g (X1,Y) ,..., g (Xn, Y) <=> Xl ,Xn :Y

b) Specification of general constraints

The external interface to specify general constraints must allow the user to specify easily his

integrity constraints defined over the external description of the data structures (i.e. previous data

385

language). Each integrity constraint is specified as a fist order assertion or a production rule. This

specification must be made at any place in the application description. The external language must

have the same expressive power as the Morse formal language, but must be more concise and more

easy to learn and to use. The external constraint language is built from the Morse formal language

as follows:

(1) The alphabet of the external language is roughly the same as that of the internal language; except

that "^" and " - ->" symbols are respectively replaced by "and" and the two keywords "if" -

"then" to distinguish between the left part and the right part of a given rule. The quantified

variables Vx et qx are respectively replaced by {x} and Ix] to alleviate the absence of the

mathematical symbols in common keyboards.

(2) The domain of interpretation of the external language is the same of that of Morse language: we

distinguish names of atomic object classes (NA) and molecular object classes (NM), atomic and

molecular object identifiers (respectively IA and IM) and the values of atomic objects (VA).

(3) The following restriction is made for variables: the scope of each defined variable is the set of

instances of a specific class. We use the notation x/class_name to represent this declaration.

(4) The value of an atomic object is delivered by the function "." defined as a composition of two

elementary functions fl and f2 defined as follows: let I X be the set of instances of X, PX the set

of atomic components of X, IA the set of all atomic identifiers and VA the set of all atomic

values, and let x, at, a i, va i be respectively elements of the previous categories:

f l : I X x P X - - > IA

(x,at) > x.at = a i / i(at, a i) ^ p(x,a i)

f2: I A - - > VA

a i > va i / v(ai,vai)

ml, x.at = f2(fl(x,at))

(5) The access to a a molecular object through another molecular object is made by the function

"->" which delivers only the molecular object identifier. This function is defined as following:

let I X be the set of instances of X, O X the set of molecular components of X, and IM the set of

all molecular object identifiers, and let x, mol, m i be respectively dements of these categories.

I x x O x ---> IM

386

(x,mol) > x->mol = m i / i(mol, mi) ^ o(x,mi)

(6) The only allowed terms are constant terms, variable terms and functional terms obtained by

et "->" function symbols.

(7) The only allowed predicates are: <, >, _<, >, =, ~.

(8) The well-formed formulas are those of the first order predicate calculus, elaborated with the

conjunction (and) and the implication (If...Then).

Example 1 : The salary of any employee is les than that of all managers.

{Oh {m/Manager } {e/Employee} e. salary < m. salary.

Example 2 : Each student's mark is between 0 and 20.

IC2: {s/Student} {m/mark} s.m~>0 and s.m<<20.

Examnle 3 : I f a student has at least one mark less than 16, then his honors is not a first class.

IC3: {s/Student} {m/mark] If s.m<16 Then s.honors ~ "first class".

Example 4 :For each contract relating a person and a vehicle, if the age of the person is less than 20

and the power of the vehicle greater than 10, then the premium of the contract is at least equal to

5000.

IC4: {p/Person} {v/V~hicle} {c/Contract}

If c->Person=p and c->Vehicle=v and p.age<20 et v.power>10

Then c .premiumS>5000.

To facilitate the rule expression, we can introduce the following composition of functions:

If x->y->z Then

which is equivalent to:

If x->Y = y and y->Z = z Then

In the same way, the following:

If x->y.Z = 'V' Then

composition is equivalent to:

If x->Y = y and y.Z = 'v' Then

With these compositions, the example 4 can be writen more simply as follows:

IC4: {p/Person} {v/V~hicle} {c/Contract}

If c->p.age<20 and c->v.power>10 Then c.premium~>5000.

387

5.4. Code generation from general integrity constraints

This subsection deals with 0 2 code generation from logical formulas describing integrity

constraints. In the process described in this section, we have not considered the case where several

different logical formulas may generate a unique constraint-method. We just focus on the case

where a formula may generate one or several methods. Before this generation process, a semantic

controle of each formula is done. Then we discuss the method definition and attachment.

a) Consistency checking of integrity constraints

The consistency checking of the constraints aims to verify in one hand the semantics of the

conslraints and in other hand their compatibility with the smile database schema. It is composed of

the following steps:

- Each constraint variable must be defined over an existing class of the static database schema,

- For each function symbol there must correspond an aggregation arc in the static semantic

network,

- Arguments of the same predicates have compatible types,

- No predicate is subsumed by another predicate,

- Check wether different predicates of the same formula are contradictory or not,

- As we have not considered the exception handling, no constraint has to be contradictory with

another one.

b) Methods definition and attachment

An integrity constraint is a first order formula specified on a semantic network. To give an

interpretation to this formula (by assigning one of the logical values: true or false) with respect the

application universe of discourse represented in a database, we must generate one or several

enforcement procedures depending on different kinds of updates envisioned for the database (insert,

delete, modify). For example, from the following constraint expression which asserts a classical

referential constraint,

RC: {p/PERSON} [a/AGENCY]

If p.Agency_name = "n" Then a.name = "n".

we may generate two enforcement procedures:

one procedure M1 triggered by the insertion of a person (or the modification of his

agency_name), which checks whether the referenced agency exists in the AGENCY class or

not,

- one procedure M2 triggered by the deletion of an agency (or the modification of its name),

which checks whether referencing persons exist or not.

388

Then, we notice that from one constraint specification, we may generate different controle

procedures, attached to different objects. We call each of these procedures a constraint-method. As

the example shows, each constraint-method is attached to a specific class. A given

constraint-method attachment is characterized by the following tuple: (Const._Narae, Class_ name,

Set of updates) where set of updates can be {insert, delete, modify }. Then an integrity

constraint specification may be characterized by a set of attachments of this form. For example, the

set of attachments characterizing the constraint RC is the following:

RC_A: { (MI, PERSON, {Insert, Modify}),

(M2, AGENCY, {Delete, Modify})}

The code generation of constraint-methods from a logical constraint specification needs the

knowledge of:

1) object classes involved in the constraint specification (known through variable declaration),

2) for each involved class, update operations which trigger this constraint (given by the end user

or generated from buiseness rules).

Having this knowledge, the process of generating a CO 2 procedure from a logical formula is

quiet simple. The same recipient frame described in the previous section is instanciated to generate

CO 2 methods.

6. Concluding Remarks and Current Extensions

In this paper, we have described a general framework for a CASE tool devoted to the design of

object oriented databases. The design approach is based on two levels: the semantic object oriented

level and the operational object oriented level. The first level is based on a semantic data model

which was extended to represent more information about the behaviour ob objects (general integrity

constraints and deduction rules). The second level is more operational, and is based on an existing

object oriented DBMS called 02. The design methodology described in this paper is implemented in

the Secsi Expert system environment which already provides a design environment for relational
databases.

This design tool is interfaced with 02 object oriented database system. It automatically generates

a CO 2 database schema and gives a very convenient way to populate the database and to check its

constistency with respect to the constraint-methods generated. A syntactic analysis of specifications,

an interactive acquisition aid of constraints and a set of consistency checking rules are also provided

too. This design environment can be considered as a powerfull mean for validating user

requirements against an image of the projected database application.

389

The new development mainly concerns the semantic checking of general integrity rules, a

decision procedure for object identification, and a more efficient code generation procedure. The

current work extends the system to aid in the acquisition and represention of buiseness rules from

which it may generate the complete behaviour of a given database. Buiseness rules are expressed as

a generalization of integrity rules, and then represented by production rules having in their right

hand side database operations.

SYNTACTIC I
ANALYSIS OF

SPECIFICATIONS

I
[[.,

ACQUISITION AID COMPLETENESS AND
OF STATIC CONSISTENCY OF

CONSTRAINTS DYNAMIC RULES

CHOICE OF METHOD]
OBJECT DEFINITION AND

REPRESENTATION A'I'FACHMENT

I I
I

CODE
GENERATION

Fig.8: The architecture of the design tool

REFERENCES

[BANC 85]

[BANC 87]

[B E R N 82]

[BERT 841

[BORG 85a]

BANCILHON F., KIM W. & KORTH H.F., "A Model of CAD Transactions" 1 lth

VLDB Conf., Stockholm 1985.

BANCILI-ION F. "Les objectifs scientifiques du GIP Altair" , Rapport Alta£r 8/1987.

BERNSTEIN P. & BLAUSTEIN B. "Fast Method for Testing Quantified Relational

Calculus Assertions" ACM-SIGMOD Conf., Colorado, June 1982.

BERTINO E. & APUZZO D. "Integrity aspects in Database Management Systems"

Proceed. of Internat. Conf. on Trends and Applications of Databases" !EEE-NBS,

Gaithersburg, USA 1984.
BORGIDA A. "A Language Features for Flexible Handling of Exceptions in

Information Systems" ACM TODS Voll0, N°4, Dec. 1985.

390

[BORG 85b] BORGIDA A. "Accomodating Exceptions in Databases, and Refining the Schema by

Learning from Them" llth VLDB Conf., Stockholm, Sweeden 1985.

[BOUZ 84] BOUZEGHOUB M. "MORSE: a Functional Query Language and its Semantic Data

Model" Proceed. of Internat. Conf. on Trends and Applications of Databases"

IEEE-NBS, Galthersburg, USA 1984.

[BOUZ 85] BOUZEGHOUB M., GARDARIN G. & METAIS E. "SECSI: An Expert System for

Database Design" llth VLDB Conf., Stockholm Sweeden 1985.

[BOUZ86] BOUZEGHOUB M. "SECSI: un syst~me expert en conception de syst~mes

d'information", Th~se de doctorat de l'universit6 P. et M. Curie, mars 1986.

[BOUZ 88] BOUZEGHOUB M., METAIS E , MARAUX F., HAZI F., " Transformation du

module MORSE en mod61e O2", Rapport de sp6cification, t~che 2 phase 1,

Infosys-Masi-Alta~, d6cembre 1988.

[BOUZ 89] BOUZEGHOUB M., METAIS E, MARAUX F., HAZI F., "Conception d'une base

de donn6es orient6e objets ~t ralde d'un modSle s6mantique" Journ6es Bases de donn6es

avanc6es, PRC/BD3, Gen~ve septembre 1989., Rapport MASI N°307, Univ. Paris VI

Nov 1989.

[BOUZ 89] BOUZEGHOUB M., METAIS E, F., HAZI F., LEBORGNE L. "Aide ~t la

sp6cification de l'int6grit6 s6mantique dans les bases de donnfes orient6es objets"

Rapport de sp6cification, t~che i phase 2, Infosys-Masi-AltaYr, septembre 1989.

[BROD 81] BRODIE M. "On Modelling Behavioural Semantics of Databases" 7th VLDB Conf.,

Cannes, France 1981.

[BROD 84] BRODIE M., MYLOPOULOS J., SCHMIDT Y. "On Conceptual Modelling:

Perspectives from Artificial Intelligence, Data Bases and Programming languages"
Springer-Verlag, NY 1984.

BRODIE M. & MYLOPOULOS J. "On Knowledge Base Management Systems"
(editors) Springer Verlag, 1986.

BUCHMANN A.P., CARRERA R.S. & VASQUEZ-GALINDO M.A. "A Generalized

Contraint and Exception Handler for an Object Oriented CAD-DBMS", in [OODB 86]

CREMERS & DOMANNG, "An Integrity Monitor for the Database System Ingres",
9th VLDB Conf., Florence 1983.

GUSTAFSSON M.R., BUBENKO J.A. & KARLSSON T. "A declarative Approach

to conceptual information modelling" in OLLE,SOL,VERRIJN-STUART (eds):

Information System Methodology: a comparative approach, North Holland Pub/. Co
1983.

HAGELSTEIN T. " A declarative Approach to information system requirements" J.
Knowledge Based Systems, 1(4) 1988.

HAMMER M.M. & McLEOD D.J., "Semantic Integrity in Relational Database
Systems" 1st VLDB Conf., Framingham, USA Sept. 1975.

[BROD 86]

[BUCH 86]

[CREM 83]

[GUST 83]

[HAGE 88]

[HAMM 75]

391

[HAMM 81]

[HAux 88]

[LECL 87]

[LECL 88]

[LOUC 89]

[MYLO 80]

[NICO 82]

[00DB 86]

[SIMO 84]

[SMIT 77]

[STONE 75]

[TSIC 82]

[TUCH 83]

[TUCH 85]

[VALL 88]

HAMMER M.M. & McLEOD D.J., "Database Description with SDM: A Semantic Data

Model" ACM TODS Vol6,N°3, Sept 1981.

HAUX L. , C. LECLUSE, P.RICHARD. "The CO2 V0.4 Language and Some

Extensions, Release 3.1" Rapport interne Altair 4-88, octobre 1988.

LECLUSE C., Ph. RICHARD & F VELEZ, V "An Object Oriented Data Model" C.

Rapport AltaYr 10/1987.

LECLUSE C, Ph. RICHARD & F VELEZ, V "Modeling Inheritance and Genericity in

Object Oriented Databases, Version 1" C. LECLUSE & Ph. RICHARD, Rapport Alta~

18/1988.

LOUCOPOULOS O. & KARAKOSTAS V. "Modelling and validating office

information systems: an object and logic oriented approach" Software Engineering

Journal, March 1989.

MYLOPOULOS J., BERNSTEIN P.A. & WONG H.K.T. "A Language Facility for

Designing Database Intensive Applications" ACM TODS Vol-15, N°2, 1980.

NICOLAS J.M. "Logic for Improving Integrity Checking in Relational Databases" Acta

Informatica, July 1982.
Object-Oriented Databases, Proceed. of the 1st Internat. Workshop, IEEE Computer

Society Press 1986.
SIMON E. & VALDURIEZ P. "Efficient Alorithm for Integrity Control in Database

Machines" Proceed. of Internat. Conf. on Trends and Applications of Databases"

IEEE-NBS, Gaithersburg, USA 1984.
SMITH J.M. & SMITH D.C.P., "Database Abstractions" Aggregation and

Generalization" ACM TODS June 1977.
STONEBRAKER M. "Implementation of Integrity Constraints and Views by Query

Modification" ACM-SIGMOD Conf., 1975.

TSICHR1TZIS D. & LOCHOVSKY F. "Data Models" Prentice Hall 1982.

TUCHERMAN L., FURTADO A. & Casanova M.A. "A Pragmatic Approach to

Structured Database Design" 9th VLDB Conf., Florence, Italy, 1983.

TUCHERMAN L., FURTADO A. & Casanova M.A. "A Tool for Modular Database

Design" 1 lth VLDB Conf, Stockholm, Sweeden 1985.

VAN ASSCHE F., LAYZELL P.J., LOUCOPOULOS P. & SPELTINCK G.

"Information System Development: a rule based approach", J. Knowledge Based

Systems, 1(4) 1988.

392

