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Abstract: 
This paper describes a design methodology for an object oriented database, based on a semantic 

network. This approach is based on the assumption that semantic data models are more powerful 

and more easy to use than current proposed object oriented data models. They are especially more 

poweful in representing integrity constraints and various relationships. Object oriented data models 

are generally based only on class hierarchies and inheritance, plus their ability to represent the 

behaviour of objects. But this latter capability is generally provided through an algorithmic language 

which cannot be considered as a conceptual language. In this paper, we combine the two categories 

of data models and give a procedure on how to translate the conceptual model to the logical model. 

1. Introduction 

Like relational databases, the design of an object oriented database is a complex art which needs 

many expertise in the domain. The simultaneous modeling of the structural aspect and the 

behavioural aspect of objects increases the complexity of the design. The current object oriented data 

models are mainly defined by a few basic constructors (like the tuple constructor and the set 

constructor) and a taxonomy of objects (i.e. hierarchy of classes and inheritance). The power of 

object oriented data models is highlighted by their ability to describe the dynamic behaviour of the 

objects (methods). However, as generally proposed in the object oriented database systems, this 

dynamic description is made in a procedural language; this fact makes the specification of the 

methods too difficult at the conceptual level. Another weakness of current object oriented data 

models is that, except through methods, they do not easily permit to specify integrity constraints on 

the objects. 

This work was partly supported by GIP/ALTAIR, PRC/BD3 and INFOSYS 
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Except for the dynamic aspect, the expressive power of semantic data models is stronger than 

that of object-oriented data models. Various relationships and integrity constraints can easily be 

specified. Class hierarchies and inheritance are generally defined in the same way. The dynamic 

aspect can be fulfilled by introducing the concept of behaviour in the semantic data models. In some 

sense, this was already done in the AI domain by the concept of script which has been developped 

to enhance the expressive power of semantic networks and frames. We follow the same approach 

and describe the behaviour of a semantic data model by means of production rules. This kind of a 

declarative language permits to avoid the complexity of procedural languages which are generally 

used in object oriented data models. The behaviour of each object in the semantic data model will be 

described by one or several rules expressing either integrity constraints or any management rules 

concerning objects. 

A large number of database design tools are based on semantic models. Secsi is one among 

others [BOUZ 85][BOUZ 86]. Many experience we got from this previous project Secsi (e.g. 

interactive acquisition of knowledge, completeness of specifications, consistency checking) is 

reused in the new domain of object orientation. 

This paper highlights on one hand the object-oriented database design methodology we have 

developped, and on the other hand the design tool which supports this methodology. This 

methodology is based on two design levels: a semantic object oriented level and an operational 

object oriented level. The process of interactive acquisition, completeness and consistency checkings 

of the behavioural rules is particularly emphasized in the first level. At the second level, we use as 

an operational object oriented model the 0 2 model, which was developed by Altair project [BANC 

87]. Then a mapping process between the two models is proposed. Besides the data structure 

mappings, the transformation of a semantic object oriented schema into an operational object 

oriented schema consists, among others, in the generation of procedural methods (C written) from a 

declarative language specification (production rules). A design tool prototype based on this approach 

has been developed and demonstrated [BOUZ 89]. 

Secsi is a database design assistant which is based on two models: a semantic data model, 

called Morse, and the relational data niodel. The semantic data model is built upon the usual 

concepts of aggregation and generalization which were refined in more basic constructors: 

aggregation of atomic objects, aggregation of molecular objects, classification of objects and 

generalization of classes. To enhance the semantic power of this model, several constraints are 

defined: domains, keys, cardinalities, dependencies, intersections and disjunctions. 
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2. The Semantic Data Model 

A semantic netwok is an oriented diagram where the nodes represent real world objects and the arcs 

represent semantic relationships between these objects. In addition, constraints can be deffmed over 

these nodes and arcs [BOUZ 84]. In the following, such a semantic network data model is 

designated by the name Morse. The following subsections detail the different concepts used in 

Morse. 

2.1. The objects of  the model 

An object is a generic term to designate the different real world individuals refered to in Morse 

schemas. We distinguish four categories of objects: in one hand instances of atomic objects (IA) 

and instances of motdcular objects (IM), in the other hand classes of atomic objects (NA) and 

classes of molecular objects (NM). Then, in the following, we use the term object in a generic 

way, and whenever necessary, we use the more specific term. 

The distinction between atomic objects and molecular objects permits to highlight their 

structural links for a better specification of the corresponding constraints. In traditional databases, 

classes of atomic objects are practically never used; files containing only one field (or one column 

relation) is generally considered as irrelevant to the application. Database operations (retrieve, insert, 

delete) are generally defined over classes of molecular objects (fde, relation). Then, in the classical 

data models, atomic objects exist only as properties or values to characterize molecular objects. In 

semantic data models and in object oriented data models, atomic objects can exist (and then be 

identified) independently of the molecular objects to which they are related. 

Atomic objects have values taken from basic domain such as: integer, real, boolean and string. 

The set of all atomic values in all domains are refered to by the name VA. Molecular objects have 

molecular values which are composed from the corresponding atomic objects which constitute the 

molecular object. 

2.2. The semantic l inks 

Semantic links are basic binary relationships between the different categories of objects mentioned 

above. These binary relationships formalize the well-known concepts of aggregation and 

generalization [SMIT 77]. Specific refinement of these concepts are introduced to take into account 

the distinction between atomic objects and molecular objects. The aggregation concept is refined as 

atomic aggregation and molecular aggregation. Generalization is refined as instance generalisation 
and class generalization. 
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a) The atomic aggregation (or aggregation of atomic objects) permits the construction of a 

new molecular object X by juxtaposition of a sequence of atomic objects A 1...A n which are 

generally, but not necessarily, of different domains. The molecular object is related to each of its 

atomic components by a couple of binary arcs a(Ai,X) and p(X,Ai) which represent the reverse 

directions of the same binary relationship relating a molecular object to its atomic component. 

a (Number, VEHICLE), p (VEHICLE,Number), 

a (Type, VEHICLE) , or p (VEHICLE, Type) , 

a (Power, VEHICLE), p (VEHICLE, Power), 

a (Color, VEHICLE) . p (VEHICLE, Color) . 

b) The molecular aggregation (or aggregation of molecular objects) permits the construction 

of a new molecular object Y by juxtaposition of a sequence of other molecular objects X1...X n. 

Each semantic relationship is represented by a couple of binary arcs r(Xi,Y) and o(Y,X i) which 

represent the reverse directions of the same binary relationship which relates two molecular objects. 

r (VEHICLE, ORDER) , or o (ORDER, VEHICLE) , 

r (CLIENT, ORDER) . o (ORDER, CLIENT) . 

c) The instance generalization (or generalization of instances) is often called classification. 

It permits to build a new class of object instances X by union of other object instances 01. . .O n. It's 

a way to define a class by extension. As the amount of objects in a given class could be very high, 

this abstraction is not often used in database schemas; then all schema objects are considered as 

classes defined intensionaly by their basic domains or their aggregations. This kind of abstraction is 

represented in the semantic network by the pair of arcs c(Oi,X) and i (X,O i) ( for  

classification/instanciation) which represent the reverse directions of the same binary relationship. 

C (CI, Color) i (Color, Cl) 

c (C2, Color) or i (Color, C2) 

c (C3, Color) i (Color, C3) 

c (Vl, VEHICLE) i (VEHICLE, v I) 

or ......... 

c (Vn, VEHICLE) i (VEHICLE, v n) 

d) The class generalization (or generalization of classes ) permits to build a new class of 

objects X as a union of other classes X1...X n by concentrating only on their common properties 

(components). This kind of abstraction is represented by a pair of arcs g(Xi,X) and s(X,X i) 

(generalization/specialization) which represent the reverse directions of the same binary relationship. 

These arcs allow to build hierarchies of classes. 
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g(CLIENT, PERSON), 
g(AGENT,CLIENT), 
g(PRIVATE_PERS,CLIENT), 

s(PERSON, CLIENT), 
s(CLIENT,AGENT), 
s(CLIENT,PRIVATE_PERS). 

The inheritance is one of  the interesting properties of generalization hierarchies; each atomic or 

molecular component of  an object X can be transfered by inheritance to objects X1...Xn, if these 

latters are sub-classes of  X. Inversely, each instance of  a sub-class is an instance of  its 

super-classes. We say that components of  objects propagate toward the leaves of  the hierarchy 

whereas the instances propagate toward the root(s) of the hierarchy. 

As for all abstractions there are two equivalent representations (equivalent reversed arcs), we 

use only one specification which subsumes the other (for example p, o, c and g) except if constraint 

specification is needed for the implicit arc. 

Nu ' Age 

p[1,1] 

fd ~ ' ~  Turnover 

Fi~.l: An example of a semantic network 

2.3. Integrity constraints 

Different integrity constraints can be specified in a Morse semantic network to enhance its capability 

to capture more meaning from the real world. Among these constraints, we can mention domains, 

cardinalities, functional dependencies, keys, intersection and disjunction of  classes, etc. In the 

semantic network, some of  these constraints are defined over nodes, oth¢rs are defined over arcs. 

The constraints are specified either as a complementary information of  binary arcs or as new 

predicates. For example, cardinality constraints are expressed as complementary information over 

a/p arcs and rio arcs, while other constraints like functional dependencies are represented by a new 
fd arc: 
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a(Number, VEHICLE,[I,I]), 
a(Type,VEHICLE, [I,N]), 
a(Power,VEHICLE, [0,N]), 
a(Color,VEHICLE, [0,N]). 

and 

r (VEHICLE, ORDER, [ 0, 1 ] ), 
r (CLIENT, ORDER, [ I, N] ). 

and 

fd(VEHICLE, lhs(Type),rhs(Power)) 

p (VEHICLE,Number, [I, i] ), 
p (VEHICLE, Type, [i, I] ), 
p (VEHICLE, Power, [i, i] ) , 
p (VEHICLE,Color, [1,3] ) . 

o (ORDER, VEHICLE, [i, i0] ), 
o (ORDER, CLIENT, [i, I] ) . 

Graphically, a given semantic network can be represented as portrayed in figure 1. 

3. T h e  O b j e c t  O r i e n t e d  D a t a  M o d e l  

The 02  data model belongs to the category of the so-called object oriented data models [LECL 87]. 

Then its basic concepts are objects and types, type constructors and type hierarchies. The data 

manipulation language could be the C language with embedded 0 2 expressions (called CO2) 

[HAUX 88] or an SQL like declarative query language (called LOOQ). 

3.1. Objects and types 

In the 02  data model, an object is composed of an identifier (the name of the object) and a value. 

Values could be either: (i) atomic values (integers, reals, booleans, strings), for example: (i 1,22), 

(i2,3.14); (ii) tuple values, for example (i 3, [name'"John",age:22]); and (iii) set values, for 

example (i4,{red, black, green}). Objects can be defined by construction using tuple ([...]) and set 

({... }) constructors. For example: 

( i 5 ,  [ n a r a e : " J o h n " ,  a g e : 2 2 ,  v : i 6 ] )  is an object having a tuple value, 
( i 6 ,  {Vl ,  v 2 , v 3 } ) is an object having a set  value. 

Objects can mutually reference each other. For example, 

(i7, [name:"John", wife:i8]), 

(i8, [name:"Mary", husband:i7]). 

Intuitively a class is a mean for representing a set of objects with their behaviour. A class is 

composed of two parts: (i) a type which contains the structure that characterises all the instances of 

the class, (ii) methods which contain operations which will be applied to these instances. A class 

may have a basic type (integer, real, boolean, suing) representing atomic objects, a tuple type 

representing objects with tuple values or a set type representing objects having set values. The 

following expressions are examples of classes : 
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Person = [name : string, age : integer] 

Employees = {p : Person} 

The tuple and set constructors could be composed to create more elaborated types (e.g. sets of 

tuples or tuples of sets). For example: 

Person = [name : string, age : integer, vehicles : { [number : integer, color : string] } ] 

The 02 data model makes a clear distinction between identified objects and non identified 

objects. The formers can be stored and manipulated independently, while the latters exist only as 

property values of other objects. For example, in the following specification, persons and vehicles 

could be manipulated independently: 

Person = [name : string, age :integer, vehicle :Vehicle] 

Vehicle = [number :integer, color : string] 

But in the following example, the object vehicle exists only as a composite attribute value of person: 

Person= [name:string,age:integer, vehicle: [number:integer,color:string] ] 

The object identity makes possible the sharing of objects. For example: 

Person = [name:string, age:integer, vehicles:Vehicles] 
Vehicles = {[number:integer, color:string]} 

Garage = [code:string, address:string, vehicles:Vehicles] 

where Person and Garage may share same objets of the class Vehicles. A partial order between 

types defines a hierarchy of types within which the inheritance concept permits to transfer 

components from one type toward its subtypes [LECL 88]. 

A method is a procedure which is associated to a type in order to describe the behaviour of the 

instances of this type. Methods introduce the notion of encapsulation which permits the 

manipulation of objects without any knowledge about their structure, nor about the internal code of 

the procedures corresponding to these methods. 

3.2. Programming in CO 2 

The CO 2 language is an embedded database language (CO2) into a procedural host language (C) 

[HAUX 88]. Besides the usual programming of algorithms, it permits to specify and access 

database objects. Objects are manipulated through methods. A method is characterized by its 

signature (its name, its type and the type of its parameters) and its body (procedure). The following 

example shows the declaration of types and the programming of methods in CO2: 
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add class Person with extension /* type declaration */ 
type tuple(name:string, age:integer,address:string, children:set(Person)) 

add class Agent inherits Person 
type tuple (code:string, salary:integer) 

method category: string is public 

body category:string in class 
{ if (self->salary > 50) 

return("VIP"); 
} 

Agent C02 

/* hierarchy of classes */ 

/* method declaration */ 

/* method procedure */ 

The keyword inherits defines a hierarchy of types. The keyword with extension creates a 

named value which contains the instances of the class and then permits set operations on this class. 

The keywords type and method respectively define the object data structure and its associated 

method signature. Its following keyword is public makes the object-integrity method visible from 

anywhere. The keyword body introduces the procedure which implements the method. Its 

following keyword in class CO2 defines the class for which this body is defined; this is useful to 

solve ambiguities of names, as method bodies can be specified independently of the class 

description. The brackets {} delimite the C source statements of the procedure. 

The definition of a database schema in CO 2 needs the knowledge of the objects structure, the 

status of objects, i.e. identified object or non identified object (value), and the sharing of the 

objects. 

4. Mapping from the Semantic Level to the Operational Level 

The CO 2 model describes both static aspect (data structures) and dynamic aspect (methods). 

Relationships between objects or object classes are not represented by a specific concept; but they 

are represented by a uniform way based on objects composition and objects sharing. As in the 

relational model, references are the unique way to represent relationships between objects. Integrity 

constraints are not considered as specific concepts of the model; they are defined in a uniform way 

as any procedure describing the behaviour of an object. The object identity allows to make a clear 

distinction between objects having their own existence, and values which are only relevant when 

characterizing other objects. The object identity is represented in CO 2 by different syntactic forms. 

The semantic data model Morse concerns only the static aspect. The different categories of 

aggregation arcs allow to specify different types of relationships between objects. Integrity 

constraints are represented as declarative assertions on the data structure. Objects identity is 

explicitely handed only for molecular objects. Indeed, in the traditional databases, we make a strict 
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dichotomy between molecular objects which are generally identified with an associative manner 

using attributes, and the atomic objects which exist only as attribute values for molecular objects. 

In the following we are only interested on the mapping from Morse to CO 2 and not for the 

reverse mapping. First we consider the structural mappings between the two models, then we study 

the representation of constraints with methods, and f'mally the general mapping process. This plan 

is made only for the soundness of the paper; in fact structural mapping rules often depend on the 

integrity constraints [BOUZ 88]. 

4.1. The mapping between objects 

An atomic object defined in Morse is equivalent in 02 to either an identified atomic object or to an 

atomic value (non identified object) inside an other object. A molecular object defined in Morse is 

equivalent to either an identified tuple structured object or to a tuple value in 02. A class of objects 

defined in Morse is partly equivalent to a class of objects defined in 02. Indeed, and as stated 

before, Morse classes describe only the static aspect of the objects, while 02 classes describe their 

behaviour too, thanks to methods. Figure 2 summerizes the correspondance between the Morse 

objects and the 02 objects. 

MORSE CONCEPTS 02 CONCEPTS 

Atomic object 

Molecular object 

Class 

Subclass 
/nstance 

Object identifier 

Atomic object / atomic value 

Structured object / tuple value 

Class 

Subclass 
Object 
Object identifier 

Fig. 2: Correst3ondance between the Morse objects and the 02  objects 

4.2. The mapping between constructors 

Both atomic and molecular aggregation defined in Morse are equivalent to the tuple constructor of 

the 02 model. More precisely, we have to include what is considered as domain constraints in 

Morse to obtain what is considered as attribute basic type in 02 . For example, the following Morse 

373 



specification: 

p (PERSON, Name) 
p (PERSON, Age) 
o (PERSON, Address) 
p(Address, Number) 
p(Address, Street) 
p(Address, Postcod) 

will be mapped into 02 as: 

dom(Name,string) 
dom(Age, integer) 

dora ( Numbe r, int ege r ) 
dom (Street, string) 
dom (Postcode, integer) 

Person=[Name:string,Age:integer,Addr:Address] 
Address=[Number:integer, Street:string,Postcod:integer] 

which can be described in CO 2 by the following statements: 

add 

add 

class Person 
type tuple (Name:string,Age:integer, Addr:Address) 

class Address 
type tuple(Number:integer, Street:string,Postcod:integer)) 

if we consider that all of  Name and Age are values of  the Person (thus they are not identified), but 

the Address is an object by itself (thus it is identified). Addr is called a reference; it is considered as 

an attribute of  Person which references an other object, i.e. Address. 

The classification/instanciation defined in Morse is partly equivalent to an 0 2  class defined 

wi th  e x t e n s i o n .  In fact the Morse abstraction can define a class only by extension, without 

necessarily describing its structure. The generalization/specialization is equivalent to the inheritance 

hierarchy in 02. In Morse, a given class can be defined by generalization from other classes even 

the structures of  these latters are unknown. Inversely, a Morse subclasse can be defined as a 

restriction of  a superclass, but without any refinement on its structure. This makes the 

generalization/specialization more general than a partial order of  types which is defined in 02. 

MORSE CONCEPTS 0 2  CONCEPTS 

Atomic aggregation 

Molecular aggregation 

Classification / Instanciation 

Generalization / Specialization 

Tuple constructor 

Tuple constructor 

Class defined by extension 

Inheritance hierarchy 

Fig. 3: Mapping between the Morse and the O2.constructors 
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The inheritance is defined in Morse as a logical property which propagates components and 

constraints of generic classes to their subclasses. In the 02 model, there is a uniform formalisation 

of hierarchies of types and inheritance (partial order of types). Figure 3 summerizes the different 

mappings between the Morse constructors and the 02 constructors. 

4.3. The mapping o f  the constraints 

Semantic integrity constraints are useful for many reasons: (i) to check the consistency of the object 

structure and values, (ii) and possibly to assist in the decision process which determines whether a 

Morse object coincides or not with an 02 object. Except for the usual domains which are 

represented by basic types in O 2 (integer, real, boolean, string), all the other Morse integrity 

constraints are represented by methods in the 02 model. In the following, we illustrate this latter 

case with cardinalities and functional dependencies. Methods which implement integrity constraints 

are particular in the sense they are not directly invoked by the users but by other methods which 

guarantee the encapsulation of the concerned object. Figure 4 summerizes the different mappings 

between the Morse constraints and the 02 concepts. 

MORSE CONCEPTS 

Domain 

Cardinalky 

functional dependency 

key 

intersection / disjonction 

0 2  CONCEPTS 

basic type / method 

set constructor + method 

method 

method 

method 

Fig. 4: Mappings between the Morse constraints and the 02 concepts 

a) Methods implementing cardinality constraints: 

Formally, cardinalities characterize binary relationships (alp and rio arcs) by specifiing the 

frequence of object participation in a given binary relationship. More precisely, a cardinality is a 

couple of values [m,n] which respectively specify the minimum and the maximum number of a 

given relationship instances to which the same object could participate. Cardinalities where n=l are 

called monovalued cardinalities and those where n>l are called multivalued cardinalities. In the 

following, we study the methods by which we will implement these constraints. As we have 
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several situations, we will only focus on three examples. 

Case 1: n(X.Y.[1.1l) : which specifies that for a given instance of X, there is only one 

instance of Y. For example: 

p(PERSON, Name, [i, i] ) Dom(Name, string) 
p(PERSON, Age, [i,i]) Dora(Age, integer) 

will be implemented into 0 2 as: 

add class PERSON 
type tuple (Name:string,Age:integer) 
method Nulle value:boolean 

body Nulle_value:boolean in class PERSON CO2 
{ if( ( ! (self->Name == (02 string) NULL)) 

&& ( ! (self->Age == (02 integer) NULL)) 
{return (true);) else return (false); 

) 

Case 2: o~X.Y.fI.N]): 

Y. For example: 

o(PERSON, Address, [I,N]) 
p(Address, Number, [i,i]) 
p(Address, Street, [I,i]) 
p(Address, Postcod, [i,I]) 
p(Address, Town, [i,i]) 

will be mapped into 0 2 as: 

which specifies that for a given instance of X, there is N instances of 

Dom(Number, integer) 
Dom(Street, string) 
Dom(Postcod, string) 
Dom(Town, string) 

add class PERSON 
type tuple(Addr:setof(Address)) 
method Bounded_set(min:integer, max:integer):boolean 

add class Address 
type tuple(Number:integer,Street:string,Postcod:string, Town:string)) 

body Bounded_set(min:integer, max:integer):boolean 
in class PERSON CO2 
{ 02 set(Address) x; 

x = (self->Addr); 
if ((min =< count(x)) && (count(x) =< max)) 
{return (true);} else return (false); 

} 

Case 3: U n i a u e  va lue  (key):  If  we specify cardinalities for the reverse arcs of  the semantic 

network, we obtain other kind of  constraints like unique values or keys: 

a (Name, PERSONNE, [i, i]) . 

This constraint can be represented into CO 2 as follows: 
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add class PERSON with extension 

type tuple (Name:integer) 

method Unique_value:boolean 

body Unique_value:boolean in class PERSON 

{ 02 PERSON p; 

integer RES; 

RES = I; 

C02 

for (p in PERSON when p->Name == self->Name) 

{RES = 0}; 
if (RES == i) {return (true);} else return (false); 

b) Methods implementing functional dependencies 

In the relational data model, functional dependencies are used to represent elementary facts between 

attributes, and then serve as a basis for the normalisation process. In the Morse semantic data model, 

functional dependencies are just considered as constraints between atomic objects within a molecular 

object. In an object oriented data model, these constraints can be implemented as methods checking the 

consistency of  the object values. For example, 

p(VEHICLE,Number) 

p(VEHICLE,Type) 

p(VEHICLE, Power) 

can be implemented as following in 02: 

df(VEHICLE,lhs(Type),rhs(Power)) 

add class VEHICLE with extension 

type tuple(Number:integer, Type:string,Power:integer) 
method Funct dependency : boolean 

body Funct dependency: boolean in class VEHICLE CO2 
{02 VEHICLE v; 

integer RES; 

RES = i; 

for (v in VEHICLE when (strcmp (self->Type, v->Type)) 

&& !(self->Power == v->Power)) 

if 
} 

{RES = 0}); 

(res == i) (return (true);} else return (false); 

We shall see later that they can be used in the similar way of  the relational model to what can be 

considered as object definition. 

4.4. The object identity and the object sharing 

In the Morse semantic data model, everything is considered as an object. Each object has a unique 

representation, then objects can be shared between different other related objects. In the 0 2 object 

oriented data model, there are objects and values; objects are sharable while values are not. So, 
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when mapping a Morse schema into an 02 schema, we have to decide whether a Morse object can 

be considered as an 02 object or as an 02 value. This decision mainly depends on the user's desire 

in the way to implement his database. He can arbitrarily decide whether a given Morse object is an 

02 object or value. For example, for the mapping of the following Morse schema (figure 5), he can 

envision many solutions: 

I,N] 

[I.N" p~l,1 ] p[l~l] [ ~  

Name Age / / % \/~--~/~n 

Number Street Postcod Town 

Fi~.5: Morse obiects 

Solution 1: one 02 object PERSON describing the whale Morse structure: 

PERSON=[Name:string, Age:integer, 

Address:{[Number:integer, Street:string, Postcod:integer,Town:string]}] 

AH other componenm are considered as values charactefi~ng a person. 

Sohtion 2: Two 02 o~ects correspon~ng m the two Morse mo~cular objects: 

PERSON=[Name:string, Age:integer, Addr:ADDRESSES] 

ADDRESSES={[Name:integer, Street:string, Postcod:integer, Town:string]} 

In this case each person's addr is a reference to a set of addresses. 

Solution 3: Three 02 objects whose one is an identified set: 

PERSONNE= [Name : string, Age : integer, addr :ADDRESSES] 

ADDRESSES : {ADDRESS } 

ADDRESS=[Name:integer, Street:string, Postcod:integer, Town:string] 

There are two kinds of objects describing addresses: the first one (ADDRESSES) describes sets of 

addresses, the second one (ADDRESS) describes tuples whose each corresponds to a given 

address. 

Solution 4: One 02 object ADDRESS corresponding to the whole Morse structure: 

ADDRESS: [Number:integer, Street:string, Postcod:integer, Town:string, 
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P e r s o n :  { [ N a m e : s t r i n g ,  A g e : i n t e g e r ]  }] 

In  t h i s  case ,  persons do not have any existence, they are just  characterizing addresses. 

There are many other solutions where we can consider that towns or telephones are 

independant objects. To decide between all these solutions, a computer design tool can help in the 

decision process by taking into account several heuristics derived from the following parameters: 

Cardinality constraints defined over arcs adp and r/o of  the semantic network: if the minimal 

cardinality of  one of  these arcs is equal 0, then the origine object of  the arc can exist 

independently of the related one. 

Functional dependencies defined between atomic objects of the semantic network: as in the 

relational model, a set of functional dependencies can determine a group of Morse atomic objects 

which may correspond to an 0 2 object. In this case, we can just highlight these groups but the 

final decision remains to the human designer. 

Keys defined for molecular objects: generally keys are used to provide an associative access to 

objects. It is generally considered as an external way of  identifiing objects. 

Users'operations and general constraints defined on the Morse objects: basic operations like 

insert, delete and update, can be considered as the main means to identify objects. We shall see 

in the next section how these operations are defined in the Morse semantic data model. 

4.5. The generator of the CO 2 code 

The generator of  CO 2 code is composed of  a set of  mapping rules which transform objects, 

relationships and constraints of  Morse toward objects and methods of  0 2 . As each Morse object 

may satisfy one or several integrity constraints, each corresponding 0 2 object or value may satisfy 

one or several methods called "constraint-methods". These latter methods are particular in the 

sense they are activated by other methods which realize the encapsulation of  the object. Then each 

update operation on a given object should activate by message passing the set of  constraint-methods 

associated to this object. This set of  constraints is called the "object-integrity". It can be itself 

considered as a general consuaint-method associated to an object. Thus each update operation has 

to know only one general constraint-method instead of  knowing the set of  all specific 

constraint-methods. 

The CO 2 code generator is composed of two parts: (i) one part generates the definition of  the 

object data structure and the cOnstraint-methods signatures, (ii) the other part generates the body of 

the object-integrity method and the bodies of  the corresponding specific constraints-methods. The 

two parts consist of  dynamicaly filling a predefined frame which is organized into slots containing 
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keywords of  the CO 2 language (figure 6). 

add class  class_name_l 

t y p e  

m e t h o d  

[ inher i t s  class__2] with  

( component_l : type_l, 

component_2 : type_2, 

component._n : type_n ) 

e x t e n s i o n  

method_signature_ 1 

method_signature_n 

b o d y  signature_method_l in class 

method body_l 

b o d y  signature_method_n in class 

method_body_n 

Fi~.6: The code ~enerator frame 
v 

class_..name_ 1 CO2 

class._name_l CO2 

An example of code generation could be the following: 

add class PERSON 
type tuple(Name:string,Age:integer,Addr:setof(ADDRESS)) 

with extension 
method Integrity:set(string) is public 

Nulle value:boolean 
Unique_value:boolean 
Bounded set(min:integer, max:integer) : boolean 

body Integrity:set(string) in class 
{ 02 set(string) ENS; 

SetRes = set(); 
if (!( [self Nulle_value] )) 
if (!([self Unique_value] )) 
if (!( [self Bounded_set] )) 
return (SetRes); 

) 

PERSON C02 

{SET += set ("Nulle_value") ; } ; 
{SET += set("Unique_value");}; 
{SET += set ("Bounded set") ; }; 

Each object-integrity method (i.e. the method Integrity of  the class Person in the previous 

example) returns a set type value. This set (e.g. SetRes in the previous example) contains the names 

of the constraint-methods which were not satisfied during the update operation. Depending on 

wether this set is empty or not, the programmer can commit or not the update operation. For 

example, we define a new insertion method which creates an object and assigns a value to each Of its 

attributes. In the definition of  this method, we must activate the corresponding integrity constraint 
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to be sure that the update is allowed with respect to the integrity constraints. 

add method insert:boolean in class CO2 PERSON 
body insert:boolean in class CO2 PERSON 

{ 02 set(string) ENS 

SetRes = [self Integrity]; 
if (SetRes == (o2 set(string)) set()) 

{PERSON += set(self)}; return (true);] 
else { printf ("Integrity constraints not respected: 

display (SetRes); 
return (false);] 

,,) ; 

In the previous code generation, the cost of  the integrity checking process is not considered. 

Constraint-methods are specified in such a way they semantically correspond to the declarative 

assertions of  the semantic network. The experience in traditional databases has shown that integrity 

checking is a very expansive process. If we want to avoid the multiple scanning of the same class, 

we have to merge in the same procedure the different constraint-methods which have been defined 

for this class. This problem is not addressed in this paper. 

5. Extending the Semantic Data Model to Represent General Constraints 

This section intends to extend the Morse semantic network to represent more generalized integrity 

constraints. These general integrity constraints should be any first order logic formula whose 

variables refer to the content of the semantic database. Before presenting this extension, let us give 

a formal representation Of a semantic database as well as for its conceptual schema and for its 

extension. This representation is not intended to represent real databases but just to give a formal 

abstract representation in order to correctly specify integrity constraints. 

5.1. The representation of a semantic database 

A Morse database schema is composed of: 

the list of names of all classes of atomic objects (i.e. instances of  NA), 

the list of names of all classes of molecular objects (i.e. instances of NM), 

for each atomic object, its domain values (basic type), 

for each molecular object, its data structure (i.e. the set of  all its p/a and o/r arcs), 

for each binary relationship (i.e. p/a and o/r arcs), its cardinalities, 

for each multiple reference to the same component, the different roles played by the component 
in the abstraction. 

For Example: 
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i(NA, P_name,string) 
i(NA, Age, integer) 
i(NA, number,integer) 
i(NA, Power, integer) 

i(NM, PERSON) 
i(NM, VEHICLE) 
i(NM, CONTRACT) 

p (PERSON,Name, [I, I] [I,N] ) 
p (PERSON,Age, [i, I] [I,N] ) 
p (VEHICLE, Power, [i, i] [0,N] ) 
p (CONTRACT, Premium, [i, I] [i, i] ) 

o (CONTRACT, PERSON, [ 1, 1 ] [ 1, N] ) 
o (CONTRACT, VEHICLE, [ i, 1 ] [ I, 1 ] ) 
g(CLIENT, PERSON) 

As previously stated, everything in Morse is an object. Then each atomic or molecular object is 

formally identified. The relationship between an atomic object identifier and its corresponding value 

is represented by a specific predicate v. The relationship between a molecular object identifier and 

its corresponding structured value is represented by a sequence of v predicates. This systematic 

identification of all objects implies a systematic sharing of objects. Then values of objects are 

represented only once. This identification permits also an independent manipulation of all object 

classes. The generalization arcs (i.e. g/s) are not directly represented in a database extension. They 

are captured by the inclusion of sets of identifiers with respect to the generalization hierarchy. In the 

following is an example of extension of the previous database schema: 

i(PERSON, PI) i(Name,Nl), v(Nl,dupond) i(Age,Al) v(AI,33) 
i(PERSON, P2) i(Name,N2), v(N2,durand) i(Age,A2) v(A2,44) 
i(PERSON, P3) 

i(VEHICLE,Vl) i(Number, II) v(Ii,123) i(Power,Wl) v(WI,5) 
i(VEHICLE,V2) i(Number, I2) v(I2,345) i(Power,W2) v(W2,7) 
i(VEHICLE,V3) i(Number, I2) v(I2,345) 

i (CONTRACT, CI) i (Premium, MI) v(Ml, 5500) 
i (CONTRACT, C2) i (Premium, M2) v (M2, 6000) 

p (PI, NI) p (Vl, II) o (Cl, PI) 
p (PI, AI) p (Vl, WI) o (Cl, Vl) 

p (CI,MI) 

p (P2,N2) p (V2, I2) o (C2, PI) 
p (P2, A2) p (V2, Wl) o (C2, V2) 

p (C2,M2) 

p (P3,N2) p (V3, I3) 
p (P3, A2) p (V3, W2) 

Obviously this representation is not defined for implementing real databases, but just as a formal 

representation for a formal reasoning. It can be considered as an abstract representation of the 

content of a given database. This representation permits a better understanding of the constraint 

specifications, and provides a convenient framework for a CASE tool. 

5.2. The representation of general integrity constraints 

A general integrity constraint is a first order closed formula, restricted to only conjunction 

connectors and at most only one implication symbole. The following expressions are allowed 
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constraints: P(X), P(X) & Q(Y), P(X) - - >  Q(Y), P(X) & Q(Y) - - >  R(X,Y). Variables can be 

quantified existencially or universally. The universe of  discourse in which these formulas are 

interpreted is constituted as follows: 

a set of  constants: composed of (i) the union of atomic objects domains (VA), (ii) the union of 

atomic objects identifiers (IA) and molecular objects identifiers (IM) and of (iii) the union of 

class names of atomic objects (NA) and class names of molecular objects (NM), 

a set of  variables taking their values in the previous defined universe of  discourse, 

a set of  predicates: composed of (i) all atomic and molecular aggregation relationships (i.e. p/a 

and o/r arcs), (ii) instance generalization and class generalization relationships (i.e. c/i et g/s 

arcs), and (iii) usual mathematic predicates: <, >, <, >, =, #. 

For example, over the previous database schema, we can def'me a general integrity constraint which 

states that if the vehicle power is greater than 10 and the person's age is less than 20, then the 

contract premium is at least equal to 5000: 

ICI:  VP vc  k/v VG VS VM 3VG 3VS 3VM 
[i(PERSON, P) ^ itVEHICLE,V) ^ i(CONTRACT,C) 

^ i(Age,G) ^ i(Power,S) ^ i(Premium, M) 

^ o(C,P) ^ o(C,V) 

^ p(P,G) ^ v(G,VG) ^ VG<20 

^ p(V,S).^ v(S,VS) ^ VS>I0] 

-->[p(C,M) ^ v(M, VM) ^ VM~5000]. 

We can also state that the age of every person is greater than 17. 

IC2: VP 3G 3VG i(Person, P) ^ i(Age,G) ^ p(P,G) ^ v(G, VG) A VG>I7 

As these constraints are specified using the same semantic arcs as for describing the static data 

structure, they can be represented by a semantic network in which each variable or constant is 

represented by a node. Variable nodes are considered as instances of object classes. The quantifier 

corresponding to each variable is represented as a complementary information of the arc i relating a 

variable to its class. For example, i(Person,x,~') describes a variable x universally quantified over 

the class Person. As the order of  the quantifiers is meaningful in a given formula, an indice is 

associated with the quantifier. For example, i(Person,x,V,1). Finally, new binary arcs (inf, sup, 

equ, einf, esup, diff) are added to the semantic network to represent the predicates: <, >, =, _<, >. 

To give more meaning to this representation, we must complete each predicate to specify whether it 

belongs to the left hand side or to the fight hand side of  the rule representing the integrity constraint. 

ICI : i (PERSON, P, ", !, left, ICI) i (VEHICLE, V, ", 2, left, ICl) 
i (CONTRACT,C, -, 4, leftright, ICI) i (Age,G, ", 5, left, ICI) 
i (Power, S, ", 6, left, ICI) i (Premium,M, ", 7, right, ICI) 

o(C,P,left,ICl) 0 (C, V, left, ICI) 

383 



p (P, G, left, ICI) 
p (V, S, left, ICl) 
p (C,M, right, ICI) 

v(G,VG, left,ICl) 
v(S,VS,left, ICl) 
v(M, VM, right, ICl) 

inf(VG,20,1eft, ICl) 
sup(VS,10,1eft, ICl) 
sup(VM, 5000,right, ICl) 

The following schema illustrates the representation of the constraint ICI.  The lower part represents 

the static data schema, the upper part represents the behavioral schema. In this latter one, we have 

separated the rule left hand side part and right hand side part; although some nodes appear in the 

both parts. 

Fig.7; An exemple of rule representation 

As for the database extension, this representation is an abstract representation for a better 

understanding and consistency checking of integrity constraints. 

5.3. The semantic object oriented language 

The Morse language is a formal language to represent the detailed description of a conceptual 

schema. This language is not intended to be used by end-users nor to implement real databases. 

Consequently, we need two things: a friendly user interface to specify data structures and 

constraints, and a real database managment system to implement the database schema. This 

subsection describes the former requirement, the latter one is supported by the 0 2 system after 

mapping Morse specifications into 0 2 specifications. 
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a) Specification of data structures 

(1) Each set of p or o predicates which defines the structure of a molecular object class is replaced 

by the following statement, if the structure is composed of atomic objects: 

X (A 1 : dora I, ..., A n : dora n) 

<=> i (NA, A 1 , dora 1) , ..., i (NA, An, dora n) , i (N-M, X) 

P(X,A1), ..., p(X,A n) 

or by the following if the structure is composed by molecular objects: 

X(YI,...,Y n) 

<=> O(X, Y1),..., o(X,Yn), i(NM, X) 

or by the following statement if the structure is either composed of atomic objects and molecula 
objects. 

X (A 1 : dom 1, ..., A n : dom n, YI, ..., Ym) 

<=> i(NA, Al,dOml), ...,i(NA, An,domn), i(NM, X) 

P(X,A I), ..., p(X,A n) 

O(X,Y 1) ,..., o(X,Y n) 

If the cardinality constraints are specified, we shall have the following description: 

X({Al:dOm 1} [aml,an 1] , 

--.t 

A n:dOmn, [am n,an n ], 

{Y1}, [rml, rnl] , 

Ym, [rmn, rnn] ) 

<=> i (NA, AI, dOtal), ..., i (NA, An, domn), i (NM, X) 

p(X,AI, [1,N] [aml,anl]), 

...e 

p(X, An, [I,N] [amn, ann]), 

o (X, YI, [1, I] [rml, rnl] ), 

...r 

O (X, Ym, [I, i] [rmn, rnn] ) 

(2) Each set of generalization arcs can be declared as follows: 

g (X, Y) <=> X : Y 
g (X, YI) ,..., g (X, Yn) <=> X:YI, ..., Yn 
g (X1,Y) ,..., g (Xn, Y) <=> Xl .... ,Xn :Y 

b) Specification of general constraints 

The external interface to specify general constraints must allow the user to specify easily his 

integrity constraints defined over the external description of the data structures (i.e. previous data 
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language). Each integrity constraint is specified as a fist order assertion or a production rule. This 

specification must be made at any place in the application description. The external language must 

have the same expressive power as the Morse formal language, but must be more concise and more 

easy to learn and to use. The external constraint language is built from the Morse formal language 

as follows: 

(1) The alphabet of  the external language is roughly the same as that of the internal language; except 

that "^" and " - ->"  symbols are respectively replaced by "and" and the two keywords "if" - 

"then" to distinguish between the left part and the right part of  a given rule. The quantified 

variables Vx et qx are respectively replaced by {x} and Ix] to alleviate the absence of the 

mathematical symbols in common keyboards. 

(2) The domain of  interpretation of  the external language is the same of  that of  Morse language: we 

distinguish names of  atomic object classes (NA) and molecular object classes (NM), atomic and 

molecular object identifiers (respectively IA and IM) and the values of atomic objects (VA). 

(3) The following restriction is made for variables: the scope of  each defined variable is the set of 

instances of  a specific class. We use the notation x/class_name to represent this declaration. 

(4) The value of  an atomic object is delivered by the function "." defined as a composition of  two 

elementary functions fl  and f2 defined as follows: let I X be the set of  instances of X, PX the set 

of  atomic components of  X, IA the set of all atomic identifiers and VA the set of  all atomic 

values, and let x, at, a i, va i be respectively elements of the previous categories: 

f l :  I X x P X - - >  IA 

(x,at) > x.at = a i / i(at, a i) ^ p(x,a i) 

f2: I A - - >  VA 

a i > va i / v(ai,vai) 

ml, x.at = f2(fl(x,at)) 

(5) The access to a a molecular object through another molecular object is made by the function 

"->" which delivers only the molecular object identifier. This function is defined as following: 

let I X be the set of  instances of  X, O X the set of molecular components of X, and IM the set of  

all molecular object identifiers, and let x, mol, m i be respectively dements of these categories. 

I x x O x ---> IM 
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(x,mol) > x->mol = m i / i(mol, mi) ^ o(x,mi) 

(6) The only allowed terms are constant terms, variable terms and functional terms obtained by .... 

et "->" function symbols. 

(7) The only allowed predicates are: <, >, _<, >, =, ~. 

(8) The well-formed formulas are those of  the first order predicate calculus, elaborated with the 

conjunction (and) and the implication (If...Then). 

Example 1 : The salary of  any employee is les than that of all managers. 

{Oh {m/Manager } {e/Employee} e. salary < m. salary. 

Example 2 : Each student's mark is between 0 and 20. 

IC2: {s/Student} {m/mark} s.m~>0 and s.m<<20. 

Examnle 3 : I f a  student has at least one mark less than 16, then his honors is not a first class. 

IC3: {s/Student} {m/mark] If s.m<16 Then s.honors ~ "first class". 

Example 4 :For each contract relating a person and a vehicle, if the age of  the person is less than 20 

and the power of  the vehicle greater than 10, then the premium of  the contract is at least equal to 

5000. 

IC4: {p/Person} {v/V~hicle} {c/Contract} 

If c->Person=p and c->Vehicle=v and p.age<20 et v.power>10 

Then c .premiumS>5000. 

To facilitate the rule expression, we can introduce the following composition of  functions: 

If x->y->z Then ...... 

which is equivalent to: 

If x->Y = y and y->Z = z Then ...... 

In the same way, the following: 

If x->y.Z = 'V' Then ...... 

composition is equivalent to: 

If x->Y = y and y.Z = 'v' Then ...... 

With these compositions, the example 4 can be writen more simply as follows: 

IC4: {p/Person} {v/V~hicle} {c/Contract} 

If c->p.age<20 and c->v.power>10 Then c.premium~>5000. 
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5.4. Code generation from general integrity constraints 

This subsection deals with 0 2 code generation from logical formulas describing integrity 

constraints. In the process described in this section, we have not considered the case where several 

different logical formulas may generate a unique constraint-method. We just focus on the case 

where a formula may generate one or several methods. Before this generation process, a semantic 

controle of each formula is done. Then we discuss the method definition and attachment. 

a) Consistency checking of integrity constraints 

The consistency checking of  the constraints aims to verify in one hand the semantics of  the 

conslraints and in other hand their compatibility with the smile database schema. It is composed of 

the following steps: 

- Each constraint variable must be defined over an existing class of the static database schema, 

- For each function symbol there must correspond an aggregation arc in the static semantic 

network, 

- Arguments of  the same predicates have compatible types, 

- No predicate is subsumed by another predicate, 

- Check wether different predicates of the same formula are contradictory or not, 

- As we have not considered the exception handling, no constraint has to be contradictory with 

another one. 

b) Methods definition and attachment 

An integrity constraint is a first order formula specified on a semantic network. To give an 

interpretation to this formula (by assigning one of the logical values: true or false) with respect the 

application universe of  discourse represented in a database, we must generate one or several 

enforcement procedures depending on different kinds of  updates envisioned for the database (insert, 

delete, modify). For example, from the following constraint expression which asserts a classical 

referential constraint, 

RC: {p/PERSON} [a/AGENCY] 

If p.Agency_name = "n" Then a.name = "n". 

we may generate two enforcement procedures: 

one procedure M1 triggered by the insertion of  a person (or the modification of  his 

agency_name), which checks whether the referenced agency exists in the AGENCY class or 

not, 

- one procedure M2 triggered by the deletion of an agency (or the modification of  its name), 

which checks whether referencing persons exist or not. 
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Then, we notice that from one constraint specification, we may generate different controle 

procedures, attached to different objects. We call each of these procedures a constraint-method. As 

the example shows, each constraint-method is attached to a specific class. A given 

constraint-method attachment is characterized by the following tuple: (Const._Narae, Class_ name, 

Set of  updates)  where set of updates can be {insert, delete, modify .... }. Then an integrity 

constraint specification may be characterized by a set of attachments of this form. For example, the 

set of attachments characterizing the constraint RC is the following: 

RC_A: { (MI, PERSON, {Insert, Modify}), 

(M2, AGENCY, {Delete, Modify})} 

The code generation of constraint-methods from a logical constraint specification needs the 

knowledge of: 

1) object classes involved in the constraint specification (known through variable declaration), 

2) for each involved class, update operations which trigger this constraint (given by the end user 

or generated from buiseness rules). 

Having this knowledge, the process of generating a CO 2 procedure from a logical formula is 

quiet simple. The same recipient frame described in the previous section is instanciated to generate 

CO 2 methods. 

6. Concluding Remarks and Current Extensions 

In this paper, we have described a general framework for a CASE tool devoted to the design of 

object oriented databases. The design approach is based on two levels: the semantic object oriented 

level and the operational object oriented level. The first level is based on a semantic data model 

which was extended to represent more information about the behaviour ob objects (general integrity 

constraints and deduction rules). The second level is more operational, and is based on an existing 

object oriented DBMS called 02. The design methodology described in this paper is implemented in 

the Secsi Expert system environment which already provides a design environment for relational 
databases. 

This design tool is interfaced with 02 object oriented database system. It automatically generates 

a CO 2 database schema and gives a very convenient way to populate the database and to check its 

constistency with respect to the constraint-methods generated. A syntactic analysis of specifications, 

an interactive acquisition aid of constraints and a set of consistency checking rules are also provided 

too. This design environment can be considered as a powerfull mean for validating user 

requirements against an image of the projected database application. 
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The new development mainly concerns the semantic checking of general integrity rules, a 

decision procedure for object identification, and a more efficient code generation procedure. The 

current work extends the system to aid in the acquisition and represention of buiseness rules from 

which it may generate the complete behaviour of a given database. Buiseness rules are expressed as 

a generalization of integrity rules, and then represented by production rules having in their right 

hand side database operations. 

SYNTACTIC I 
ANALYSIS OF 

SPECIFICATIONS 

I 
[ [ ., 

ACQUISITION AID COMPLETENESS AND 
OF STATIC CONSISTENCY OF 

CONSTRAINTS DYNAMIC RULES 

CHOICE OF METHOD ] 
OBJECT DEFINITION AND 

REPRESENTATION A'I'FACHMENT 

I I 
I 

CODE 
GENERATION 

Fig.8: The architecture of the design tool 
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