
Optimal Distribution Assignment Placement

Jens Knoop I and Eduard Mehofer 2

1 Universit~t Passau, F~ult~t fiir Mathematik und Informatik, Innstral~e 33,
D-94032 Passan, Germany (e-mail: knoop@fmi.uni-passau.de)

2 Universit~t Wien, Institut fiir Softwaretechnik und Parallele Systeme,
Liechtensteinstr. 22, A-1090 Vienna, Austria (e-maih mehofer@par.univie.ac.at)

Abstract. Dynamic data redistribution is a key technique for main-
taining data locality and workload balance in data-parallel languages
like HPF. On the other hand, redistributions can be very expensive and
significantly degrade a program's performance. In this article, we present
a novel and aggressive approach for avoiding unnecessary remappings by
eliminating partially dead and partially redundant distribution changes.
Basically, this approach evolves from extending and combining two al-
gorithms for these optimizations achieving optimal results for sequential
programs. Optimality, however, becomes more intricate by the combi-
nation. Unlike the sequential setting the data-parallel setting leads to a
hierarchy of algorithms of varying power and efficiency fitting a user's in-
dividual needs. The power and flexibility of the new approach are demon-
strated by illustrating examples. First practical experiences underline its
importance and effectivity.

1 M o t i v a t i o n

The user-controlled distribution of data across the local memories of the process-
ing nodes is a central feature of data-parallel languages like High Performance
Fortran (HPF) [3], Fortran D [4], or Vienna Fortran [13]. A program's perfor-
mance can critically depend on the distribution chosen. Dynamic data redistri-
butions, e.g., in case of varying computational kernels or dynamically varying
processor workloads, are thus a major means for improving the performance. On
the other hand, remappings can be quite expensive as communication is required
to migrate the array elements to their new owning processors. Unnecessary dis-
tribution changes can therefore significantly degrade a program's performance.
Avoiding them is of key importance to gain efficiency.

In this article we present a novel and aggressive approach for distribution as-
signment placement (DAP), which, in essence, works by eliminating partially dead
and partially redundant distribution changes. Basically, this approach evolves
from extending and combining two algorithms for partially dead and partially
redundant assignment elimination achieving optimal results for sequential pro-
grams (cf. [7,8]). Intuitively, the new algorithm computes beneficial insertion
points for distribution assignments by means of code hoisting and sinking in-
terleaved by eliminating redundant and dead code, which captures removal of

365

unnecessary remappings uniformly in straight-line code as well as in loops. Be-
sides the well-known second-order effects (cf. Section 2) introduced by inter-
dependences of different statement patterns, which can be overcome as usual
by repeated applications of the elementary transformations, the interleaving of
all four elementary transformations reveals additional interdependences of the
transformations themselves making optimality more intricate as the result de-
pends on the particular sequence of the elementary transformations. On the
other hand, and in contrast to the sequential setting, the data-parallel setting
leads to a hierarchy of algorithms of varying power and efficiency fitting a user's
individual needs. While the basic version of Pure DAP focusses on distribution
assignments and resolves second-order effects among them, the algorithm of Full
DAP resolves even all second-order effects between ordinary and distribution as-
signments, and achieves results, which cannot be improved any further by means
of the elementary transformations. Partially dead and partially redundant dis-
tribution assignments remaining in the program cannot be eliminated further
without changing its branching structure or impairing some of its executions.

2 Illustrating Example and Practical Experiences

Since HPF allows to change the distribution of arrays explicitly as well as im-
plicitly with redistribute/realign directives and at subprogram boundaries, re-
spectively, we introduce as in [10] distribution assignments, which are part of
the intermediate program representation and allow a uniform treatment of all
remappings. Hence, distribution assignments are inserted by the compiler when-
ever an array is associated with a distribution.

The example of Figure 1 illustrates the essential features and the full power
of our approach to resolve second-order effects between different statement pat-
terns. The use of alignments for specifying the distribution of arrays introduces
dependences between different distribution assignments. Parameters in distribu-
tion specifications like in BLOCK(i) and CYCLIC(i) introduce dependences be-
tween ordinary and distribution assignments, as well. Both kinds of dependences
may result in second-order effects as illustrated in Figure l(a) and l(b).

The distribution assignments in node 3 just before and just after subroutine
call F are necessary to establish the requested distributions on entry and to re-
store the original one on exit according to the HPF semantics. The alignment of
array B to array A is denoted by aA s. Note that none of the distribution assign-
ments within the loop is (totally) redundant or dead. However, the distribution
assignments at the exit of subroutine F can be removed from the loop by placing
them in node 4 as they are dead inside the loop. Whereas the distribution as-
signment dist(B) := BLOCK at node 4 is now totally live, dist(A) := CYCLIC(k)
is still partially dead. Moving it to node 6, however, where it would be totally
live as well, is prevented by the assignment to variable k. Sinking of the ordinary
assignment k suspends this blockade and subsequently allows the elimination of
the partially dead assignment dist(A) := CYCLIC(k), which, as a second-order
effect, turns dist(A) := BLOCK at node 5 to be redundant and, hence, can be

366

l
/* initialization - entry node */ [

I 1 d is t (A) := C Y C L I C (k)
[dist(B) := B L O C K

i No Use of " 'A"

I
dis t (A) := B L O C K
dis t (B) := (xA ~
C A L L F (A ,B)
d is t (A) := C Y C L I C (k)
d is t (B) := B L O C K

'1
4 k := ...

... B(i) ,.. / ---....
$... A(i) , k ...

a) Original flow graph

5 k := ...
... A(i) , k ...

1 P' i ~ o n - catty node*/
dis t (A) := B L O C K
dis t (B) := B L O C K

', No Use of "A "
f

2 "'" B(i) ...
d~t(B) := ~

- -) [
3] C A L L F (A , B)

'1
4 d is t (B) := B L O C K

... B(i) ...

] d i s t (A) := C Y C L I C (k)
6 k := ...

... A(i) , B(i) , k ...

b) Optimized flow graph

Fig. 1. Motivating example: Illustrating second-order effects and the power of DAP.

eliminated. As another second-order effect, the distribution assignment to A at
the entry of the loop becomes partially redundant, and can be hoisted out of the
loop to node 1. This also suspends the blockade of dist(B):= a~ at the entry of
the loop, which, as a further second-order effect, can now be moved to node 2.

Figure 1 (b) shows the result of the complete transformation, which is achieved
by our approach. Note that the optimized flow graph is optimal: it is free of any
partially dead and partially redundant distribution assignment.
Practical experiences: Reducing the number of remappings, in particular
within loops, may decrease the runtime of programs tremendously (cf. perfor-
mance results of [10]). Such performance improvements are not surprising in
the light of average remapping costs. Ramaswamy et al. [12] developed highly
efficient remapping routines: remappings with different processor sets (from 8
to 16 processors) and redistributions from (cyclic(3),block) to (cyclic,cyclic(5)),
(cyclic(3),cyclic(7)) to (cyclic(5),cyclic), and (cyclic,,) to (,,cyclic) took for ar-
rays with sizes 100 × 100, 200 × 200, and 400 × 400 on the average about 5 msec,
10 msec, and 32 msec on an Intel Paragon, respectively.
R e l a t e d work: Redistribution analysis has been addressed by several researchers.
Hall et al. [5] presented techniques for hoisting remappings out of loops and
eliminating dead remappings. Their approach is incomparable to ours as it takes
interprocedural information into account, but does not consider the more gen-
eral problem of eliminating partially dead and partially redundant remappings.
Coelho et al. [2] describe an optimization which reduces the communication
amount by removing useless remappings and taking advantage of replications to
shorten individual remappings. Optimal in their sense means that for a given

367

remapping, a minimal number of messages is sent over the network. The problem
of reducing the overall number of remappings by employing code motion has not
been addressed. Similarly, this holds for Ramaswamy et al. [12], whose focus lies
on the automatic generation of efficient routines for migrating the array elements
to their new owning processors. Palermo et al. [11] present several analyses re-
lated to dynamic redistributions: computation of reaching distributions, making
all remappings (including the implicit ones at subprogram boundaries) explicit
and removing the redundant ones, and converting programs with dynamically
distributed arrays into subset HPF. Motion of data remappings is not considered.

3 Preliminaries

As usual we represent a program by a directed flow graph G = (N, E, s, e) with
node set N and edge set E. Nodes n E N represent basic blocks of instruc-
tions, edges (m, n) E E the nondeterministic branching structure of G, and s
and e the unique start node and end node of G, which are assumed to have
no incoming and outgoing edges, respectively. All statements of a program are
classified as follows: (ordinary) assignment statements including both scalar and
indexed variables; the empty statement skip; distribution assignments of the form
dist(A) := 5, which are generated by the compiler and uniformly express dis-
tribution changes occurring throughout the program at subprogram boundaries
and for redistribute/realign directives; subprogram calls, and output operations
of the form out(t) forcing all operands of term t to be alive. Finally, all edges
leading from a node with several successors to a node with several predecessors
are assumed to be split by a synthetic node. This is typical for code motion
transformations in order to avoid that the motion process gets stuck (cf. [7,8]).

4 Distribution Assignment Placement

In this section we stepwise develop our hierarchy of DAP-algorithms starting with
the algorithms of pure and full DAP providing first user-customized solutions
for eliminating unnecessary overhead due to distribution changes. In essence,
this works by exploiting the trade-off between efficiency and power of the trans-
formation. For convenience, we consider an arbitrary but fixed flow graph G.
Moreover, let 7) denote the set of ordinary and distribution assignment patterns
occurring in G, and let D c_ 7) denote the subset of distribution patterns.

As illustrated in Section 2 the essence of DAD is to avoid unnecessary execu-
tions of distribution assignments at runtime. Intuitively, a distribution assign-
ment is unnecessary, if it is dead, i.e., there is no program continuation on which
its left-hand side variable is used without a preceding distribution assignment,
or if it is redundant, i.e., on every program path reaching it a distribution assign-
ment of the same pattern has been executed without an intermediate distribution
change. Hence, DAP relies on the combined effects of

- eliminating partially dead and partially redundant assignments.

368

This is important because both subproblems can optimally be solved as it was
discussed in [7] and [8] presenting algorithms for partially dead code elimination
(PDCE) and partially redundant assignment elimination (PRAE), respectively.
Below, we are going to show how to enhance these algorithms being developed
for a standard sequential program setting to the data-parallel setting, and how
to combine them uniformly in order to arrive at a hierarchy of user-customized
DAP-algorithms.

4.1 The Component Transformations of DAP: PDCE and PRAE

Like DAP, PDCE and PRAE consist conceptually of two elementary transfor-
mations each: assignment sinkings (AS) and dead code eliminagons (DCE), and
assignment,hoistings (AH) and redundant assignment eliminations (RAE), re-
spectively. Assignment sinkings (hoistings) move assignments as far as possible
in the (opposite) direction of the control flow (i.e., while maintaining the pro-
gram semantic) . Intuitively, this places them in a context as specific (general)
as possible, and maximizes the potential of dead (redundant) code, which sub-
sequently is removed by dead (redundant)ass!gnment elimination.

The analyses for DCE and RAE coincide with their classical counterparts.
Thus, we oniy recall the intuition underlying the AS- and AH-analysis, and how
to adapt them to the data-parallel setting considered here (a detailed presenta-
tion can be found in [6]). The point of these analyses is to restrict assignment
sinkings and hoistings to admissible ones, i.e., those preserving the semantics.
In essence, admissibility requires that assignments are never moved across in-
structions blocking them, i.e., using or modifying their left-hand side variables,
or modifying some of their right-hand side variables complemented by variables
used in index expressions of their left-handside variables. Additionally, subpro-
gram calls are considered blockades for assignments as we do not perform an
interprocedural analysis. In fact, the same constraints we impose on distribution
assignments. As a consequence, the~AS- and AH-analysis of [7,8] apply directly to
distribution assignments aswell. In particalar, this guarantees that assignment
sinkings (hoistings) respect the distribution proposed by the programmer: for
each array reference the distributions in the original and the optimized program
are identical. 1

The PDCE- and PRAE-Algorithms and their Optimal i ty . Following [7,8]
the second-order effects induced by interdependences of different assignment pat-
terns (cfi Section 2)are fully "captured by repeatedly applying the elementary
transformations of PDCE agd=PRAE until the program stabilizes. This is conve-
niently expressecL by means of the following regular-expression like terms

PDCE - (AS + DCE) + and PRAE - (AH 4- RAE) +

1 Note that this constraint could be weakened according to the quite typical assump-
tion for data-parallel; languages that array distributions do not affect the program
semantics. In our approach, this can easily be achieved by defining the blocking
constraint for ordinary and distribution assignments differently.

369

where AS (AH), and DCE (RAE) denote a single application of the assign-
ment sinking (hoisting), and dead (redundant) assignment elimination proce-
dure to all assignment patterns of ~'. As shown in [7,8] the programs resulting
from PDCE or PRAE, respectively, are optimal: they are best, i.e., better than
any other program in the set of programs Gpuce=a/{G'IGF~As+ocE)G') and
~pr~=d/{G'IG~-(*An+RAE)G'} derivable from G by means of sequences of ad-
missible assignment sinkings (hoistings) and dead (redundant) assignment elimi-
nations, where a program G I is better than a program G" iff for every assignment
pattern the number of assignments executed Oil each path in G t is less or equal
to that in G' . In particular, the programs finally resulting from PDCE and PRAE
do not depend on the specific order of the elementary transformations: they are
uniquely determined up to (irrelevant) local reorderings in basic blocks (cf. [7,8]).

4.2 I n t e r d e p e n d e n c e s be tween PDCE and PRAE

As recalled above, the elementary transformations of PDCE or PRAE can be ap-
plied in ally order without affecting the program finally resulting (cf. [7,8]). Ill
fact, there is a "globally best" program in the set of programs being derivable
by admissible assignment sinkings (hoistings) and dead (redundant) assignment
eliminations, which finally is reached by any transformation sequence. Unfortu-
nately, this property gets lost as soon as all four elementary transformations are
interleaved as required for DAP. This is illustrated by the flow graphs of Figure 2.
Applying PD CE first we arrive at the program of Figure 2(b), applying PRAE first
we arrive at the program of Figure 2(c). Note that both programs are invariant
under further admissible assigmnent motions and dead (redundant) assignment
eliminations. Moreover, they are incomparable. While each path through the
program fragment of Figure 2(c) contains precisely one distribution assignment,
there is a path through the fragment of Figure 2(b) being free of distribution
assignments, and another one containing two.

a)

_.- ...

/ /
No Use of "A"!

Original Flow Graph

b)

l U 1

((,
, /

No U~¢ of "A"!

After PDCE

e)

.,.,- {:;

/ /
No Use of "A"!

After PRAE

Fig. 2. Interdependences between PDCE and PRAE.

370

As pointed out by this example, PDCE and PRAE influence each other by
mutually removing opportunities for their respective counterpart. Nonetheless,
the process of interleaving all four elementary transformations always comes up
with a program, which cannot be improved any further by means of semantics
preserving eliminations of partially redundant and partially dead assignments
leaving the program structure invariant, i.e., with a program being "locally
best". However, different transformation sequences will usually come up with
different locally best programs, which, in general, behave better on some pro-
gram paths, but worse on others. Therefore, we concentrate here on the question
in which order to apply the elementary transformations to achieve fast stabiliza-
tion. Obviously, AS- and AH-steps should always be interleaved with DCE- and
RAE-steps (as AS and AH just reverse each other's effect). This implies interleav-
ing of PDCE and PRAE which, in general, must be applied repeatedly in order to
reach a stable state (see [6] for an example). In essence, this is a consequence of
the fact that RAE (DCE) removes blockades which prevent partially dead (par-
tially redundant) code to be sunk (hoisted) to places where it becomes totally
dead (redundant). Thus, the question reduces essentially to that of starting with
PDCE or PRAE? Though in general any decision at this point is arbitrary, two
reasons suggest starting with PDCE. First, the situation displayed in the example
of Figure 1, where PDCE is a prerequisite for enabling PRAE, can be considered
quite typical for data-parallel programs. Second, PRAE never creates partially
dead assignments, but PDCE may create partially redundant ones. Though not
sufficient, this enlarges the chance that PDCE followed by PRAE already termi-
nates with a locally best program as demonstrated in Section 2.

4.3 P u r e DAP

Pure DAP focusses on the placement of distribution assignments. Before pre-
senting this algorithm in detail, we remark that the computational complexity
of PDCE and PRAE, and hence of DAP depends significantly on the number of
iterations required for fully capturing the second-order effects of the elemen-
tary transformations. Hence, decoupling assignment patterns are a major means
for enhancing the algorithm's efficiency. For distribution assignments this can
be achieved by a simple preprocess which focusses on alignments and variables
occurring in distribution specifications. It replaces alignments by explicit distri-
bution specifications where possible. For instance, REALIGN B(:) WITH A(:) is
replaced by REDISTRIBUTE B(BLOCK), if reaching distribution analysis yields
that array A is distributed by BLOCK. Variables used in distribution specifica-
tions like variable i in BLOCK(i) or CYCLIC(i) may prevent distribution assign-
ment motion. Constant propagation helps to suspend such blockades by replac-
ing e.g. CYCLIC(i+j) with CYCLIC(3+I) and finally by CYCLIC(4) by expression
folding. We remark that there is a trade-off between the costs of the preprocess
and the number of iterations subsequently saved. However, reaching distribution
and constant propagation analysis, on which it relies, are usually also exploited
for other optimizations, and are thus in part for free.

371

Now, we can present the algorithm of pure DAP in detail. It is given by the
iterated sequential composition of the algorithms for PDCE and PRAE applied
to the distribution assignment patterns of I):

DAPpu~e = (PDCE~ PRAE~) +

Note, if the preprocess succeeds in decoupling all patterns of Z), PDCEo and
PRAEo can equivalently be replaced by the more efficient algorithms specified
by (ASo DCE~) and (AHv RAEo), respectively.

4.4 Full DAP

The Pure DAP-algorithm focusses on distribution assignment patterns. Thus, it
does not capture second-order effects due to ordinary assignments. As a conse-
quence the elimination of partially dead and redundant distribution assignments
can get stuck by not considering the interdependences with ordinary assignments
(cf. Figure 1 where distribution assignment dist(A) := CYCLIC(k) is blocked by
the ordinary assignment k at node 4). The Full DAP-algorithm thus considers
all assignment patterns of P: it is the iterated sequential composition of the
algorithms for PDCE and PRAE applied to all assignment patterns of 7):

DAP~LI - (PDCE PRAE) +

Figure 1 illustrates the power of the Full DAP-algorithm, where it is unique to
eliminate all partially dead and partially redundant distribution assignments.

4.5 Customized DAP-Variants: Enhancing Power and Efficiency

The algorithms of Pure and Full DAP constitute the kernel of a hierarchy of DAP-
algorithms of varying power and efficiency allowing customized DAP-variants ac-
cording to a user's requirements. Efficiency for example, can simply be enhanced
by limiting the number of iterations of the component transformations. The ra-
tio underlying this heuristic to yield algorithms being still reasonably effective is
that distribution assignments are used in a quite restricted manner in practice
only. The extreme variant is here the one-step heuristic focussing on distribu-

oue-st~p = (ASo DCEz)) (AH~ RAE~)). On the other tion assignments: DAPpure
hand, the transformational power of the DAP-algorithms can easily be enhanced
by replacing the partial dead-code elimination procedure by the more powerful
partial faint-code elimination (PFCE) procedure (see [7] for details). Finally, all
DAP-algorithms can be combined with distribution assignment masking. This
ensures that distribution assignments (at the price of a much cheaper runtime
test) are executed at runtime only if they have a non-trivial effect.

4.6 Main Results: Optimality

Let Gp~re and Gf~u be the programs resulting from our algorithms DAPp,~re and
DAPtuu , respectively. Denoting the sets of programs derivable from G by apply-
ing the four elementary transformations of pure and full DAP in any order by

372

fY~_* f~t'l ~mi$z,=dl {G'] L* (AS~+DCE~+AH~+RAE:p),J 1- and, analogously, by Gmix=dI {G'I
GF(AS+DCE+AH+RAE)G }, we have:

T h e o r e m 1 (l s t Opt imal i ty Theorem) .
Giull and Gvurc are locally best in Gm~z and Gm~,p, respectively, i.e., they cannot
be improved any further by means of admissible assignment sinkings (hoistings)
or dead (redundant) assignment eliminations.

Actually, this is almost the best we can expect for G~ll (Gpure) in Gmi~ (Gmi~v).
As illustrated in Section 4.2, Gm~ (Gmi,v) lacks in general the existence of a
program being "globally best", but provides a number of programs being "locally
best", i.e., which cannot be improved any further by means of the component
transformations of PDCE and PRAE. In particular, any remaining partially dead
or partially redundant assignment in GI, u (Gp~) cannot be removed by the re-
spective class of assignment sinkings/hoistings and dead/redundant assignment
eliminations under consideration without modifying the branching structure of
the program or impairing some program executions.

In practice, even the simple sequential composition of PDCE and PRAE with-
out iterating (i.e., D A P smp' - - (PDCE PRAE)) which results in G~m~ l and G~l pl,
respectively, often succeeds in completely removing partially dead and redundant
assignments. Though this does not hold in general (in par tlcular" Gpur esmpl O, llu.-~A LTf ull/~smpl
need not to be locally best in ~m~zT, and Gmi,, respectively), the following opti-
maiity result applies to them. Let gv~re -~'df {G t I GF~AS~ ~-DCE~p) GF ~AH~ -}-RAE~) Gt}
and Giuu=ai {G'IGe~AS+DCe)O~AH+RAe)G'}, where G is assumed to be invari-
ant under further assignment sinkings (up to local reorderings in basic blocks)
and dead code eliminations. Then, we have (cf. [7,8]):

T h e o r e m 2 (2rid Opt imal i ty T h e o r e m) .
Gsmpl (~smpl Iuu and --pure are optimal in Gfuu and ~,~rc, respectively.

5 C o n c l u s i o n s

Eliminating partially dead and partially redundant redistributions is of key im-
portance to gain efficiency. Based on the recently developed algorithms for PDCE
and PRAE of [7] and [8] working for standard sequential programs, we showed
how to adapt and combine them to optimize data remappings in data-parallel
languages. Second-order effects between PDCE and PRAE showing up by com-
bining them required not only a refined optimality investigation, but also led to
a hierarchy of algorithms for distribution assignment placement of varying power
and efficiency providing customized solutions fitting a user's individual needs.
This ranges from extremely efficient one-step heuristics to extremely powerful
procedures resolving all second-order effects between different assignment pat-
terns like the enhanced Full DAP-Algorithm. Currently, we are investigating an
interprocedural extension of our approach along the lines of [9], and how it com-
pares to other interprocedural algorithms. An implementation of our approach
within the VFCS system [1] is in progress.

373

A c k n o w l e d g e m e n t s : We thank the anonymous referees for their valuable com-
ments and references to related work. Moreover, we are very grateful to Shankar
R.amaswamy and Prithviraj Banerjee for making their H P F redistribution library
available to us.

References

1. S. Benkner, S. Andel, R. Btasko, P. Brezany, A. Celic, B.M. Chapman, M. Egg,
T. Fahringer, J. Hulman, E. Kelc, E. Mehofer, H. Moritsch, M. Paul, K. Sanjari,
V. Sipkova, B. Vclkov, B. Wender, and H.P. Zima. Vienna Fortran Compilation
System - Version 1.2 - User's Guide. Institute for Software Technology and Parallel
Systems, University of Vienna, Vienna, February 1996.

2. F. Coelho and C. Ancourt. Optimal compilation of HPF remappings. Journal of
Parallel and Distributed Computing, 38(2):229-236, November 1996.

3. High Performance Fortran Forum. High Performance Fortran language specifica-
tion version 2.0. Technical report, Rice University, Houston,TX, January 1997.
Available via HPFF home page: http://www.crpc.rice.edu/HPFF.

4. G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and
M.-Y. Wu. FORTRAN D language specification. Technical report, Rice University,
Houston,TX, January 1992.

5. M. W. Hall, S. Hirandani, K. Kennedy, and C.-W. Tseng. Interprocedural compi-
lation of Fortran D for MIMD distributed-memory machines. In Proe. of Super-
computing '92, pages 522-534, Minneapolis, MN, November 1992.

6. J. Knoop and E. Mehofer. Distribution assignment placement: A new aggressive
approach for optimizing redistribution costs. Technical Report TR 97-6, Institute
for Software Technology and Parallel Systems, University of Vienna, Austria, 1997.

7. J. Knoop, O. Riithing, and B. Steffen. Partial dead code elimination. In Proc. of
the ACM SIGPLAN 'g~ Conference on Programming Language Design and Imple-
mentation (PLDI'9~), pages 147-158, Orlando, FL, June 1994.

8. J. Knoop, O. Rfithing, and B. Steffem The power of assignment motion. In
Proc. of the ACM SIGPLAN '95 Conference on Programming Language Design
and Implementation (PLDI'95), pages 233-245, La Jolla, CA, June 1995.

9. J. Knoop, O. Rfithing, and B. Steffen. Towards a tool kit for the automatic gen-
eration of interprocedural data flow analyses. Journal of Programming Languages,
4(4):211-246, 1996.

10. E. Mehofer and H. Zima. Distribution assignment placement. Technical Report
TR-96-5, Institute for Software Technology and Parallel Systems, University of
Vienna, Austria, 1996.

11. D.J. Palermo, E.W. Hodges, and P. Ba~erjee. Interprocedural array redistribution
data-flow analysis. In Proc. of the gth Workshop on Languages and Compilers]or
Parallel Computing, San Jose, CA, August 1996.

12. S. l~maswamy, B. Simons, and P. Banerjee. Optimizations tbr efficient array
redistribution on distributed memory multicomputers. Journal of Parallel and
Distributed Computing, 38(2):217-228, November 1996.

13. H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran
- A language specification version 1.1. Technical Report ACPC/TR 92-4, Austrian
Center for Parallel Computation, March 1992.

