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Abst rac t .  We discuss a parallelization scheme for SSOR precondition- 
ing of Krylov subspace solvers as applied in lattice gauge theory compu- 
tations. Our preconditioner is based on a locally lexicographic ordering of 
the lattice points leading to a parallelism adapted to the parallel system's 
size. By exploitation of the ~Eisenstat-trick' within the bi-conjugate gra- 
dient stabilized iterative solver, we achieve a gain factor of about 2 in the 
number of iterations compared to conventional state-of-the-art odd-even 
preconditioning. We describe the implementation of the scheme on the 
APE100/Quadrics SIMD parallel computer in the realistic setting of a 
large scale lattice quantum chromodynamics simulation. 

1 I n t r o d u c t i o n  

Lattice gauge theory (LGT) deals with the controlled numerical evaluation of 
gauge theories like quantum chromodynamics (QCD) on a 4-dimensional space- 
time-grid. QCD [1] is considered as the fundamental theory of the strong forces 
that  bind quarks with gluons to form the known hadrons like the proton or 
neutron. In the low energy regime, QCD cannot be solved by non-perturbative 
analytical methods. Therefore, numerical simulations become more and more 
important  to provide theoretical input for current and future accelerator ex- 
periments that  a t tempt  to observe new physics beyond the Standard Model of 
elementary particle physics [2]. 

The heavy computational demands in LGT are due to repeated solution of 
a huge system of linear equations, 

M e  = (1 - nD)¢  = ¢, (1) 

with M being the so-called fermion (quark) matrix (that can be considered as 
analogous to a discretised Laplace equation) of dimension r = 3 × 4 x V. V is 
the volume of the underlying 4-dimensional space-time lattice, D contains non- 
diagonal elements only. The solution ¢ of (1), a Green's function, describes the 
time behavior of the quarks [3]. This Green's function is related to both the 
simulation of QCD with respect to dynamical quark-gluon interaction and the 
extraction of physical observables like hadron masses. The size of the solution 
vector is of order O(107 ) elements in today's state-of-the-art simulations. 

* Presented by Th. Lippert 
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Recently, the BiCGstab method [5] has been established as nearly optimal 
Krylov subspace method in lattice QCD applications [6], requring only slightly 
more less iterations than the full GMRES method. This quasi-optimality sug- 
gests to turn attention on multigrid methods and/or preconditioning in order to 
achieve further speed up in numerical methods for solving (1). The application 
of multigrid techniques, up to now, is impractical, however, due to the gauge 
noise of the gluonic background field entering the fermion matrix in form of 
matrix coefficients of the discrete differential operator. This fields represents the 
gluons in lattice QCD (particles analogous to photons in electrodynamics). Thus 
preconditioning techniques, i.e. methods to decrease the condition of M appear 
to be the only promising path to further accelerate Krylov subspace solvers like 
BiCGstab. 

A widely used parallelizable preconditioning approach in lattice gauge com- 
putations rests upon an odd-even decomposition of the matrix M [7]. It yields 
an efficiency gain by a factor of 2 when solving (1). In the mid-eighties, Oy- 
anagi [8] proposed to use a certain incomplete LU (ILU) factorization of M as 
a preconditioner. As it stands, Oyanagi's method works satisfactorily on vector 
machines. However, on local memory or grid-oriented parallel computers, this 
preconditioner can hardly be implemented efficiently. 

In the present paper we will discuss the parallel aspects of a new SSOR 
preconditioner for Lattice QCD. We call it the locally lexicographic SSOR pre- 
conditioner (LL-SSOR). As opposed to multicolor preconditioners (like the odd- 
even preconditioner) which lead to a decoupling of variables on a very fine grain 
level, the LL-SSOR approach reduces the decoupling to the minimum which is 
necessary to achieve a given parallelism. As for any SSOR preconditioner, the 
Eisenstat Trick [9] is crucial to its efficient implementation. 

Our numerical experiments show that LL-SSOR leads to the fastest known 
solution method on current parallel computers [10], if M represents the widely 
used standard Wilson fermion matrix. The SSOR preconditioner is applied on 
the Italian supercomputer APE100/Quadrics and on the Cray T3E within the 
large scale simulation project SESAM [11, 12]. 

2 P r e c o n d i t i o n i n g  

2.1 Symmetric Gauss-Seidel method 

Generally, the preconditioning of (1) proceeds by application of two non-singular 
matrices V1 and V2. They play the role of a left and a right preconditioner, 
respectively: 

V~-IMV~-I¢ = ¢, where ¢ : V~-1¢, ~ = V2¢. (2) 

Any Krylov subspace method could now be applied directly to (2), replacing 
each occurrence of M and ¢ by V~-IMV~ -1 and ¢, respectively. 

However, this would yield only the preconditioned iterates ~k and precon- 
ditioned residuals. Therefore, one usually reformulates the algorithms incorpo- 
rating an implicit transformation back to the unpreconditioned quantities. For 
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BiCGstab  the resulting algorithm then requires two additional systems with ma- 
trix V = V11/2 and two systems with matr ix  V1 to be solved in each iterative 
step (see Ref. [5]). 

We consider symmetric Gaut3-Seidel (SSOR) preconditioning. Assuming tha t  
M is scaled to unit diagonal and denoting M = I - L - U with L strictly 
lower and U strictly upper triangular, the SSOR preconditioner is specified by 
VI = I -  L ,  V2 = [ - U. 

2.2 E i s e n s t a t - T r i c k  

For the SSOR preconditioner the simple identity 1/1 + V~ - M = I holds. This 
impor tant  relation allows to apply the so-called 'Eisenstat- tr ick '  [9]: We can 
write VI- IMV2 -1 = V2 -1 + V~-I(I  - ~ - 1 ) .  Thus the matr ix  vector product  w = 
VI-IMV2-1r  amounts to a 2-step solve 

v=vi-lr, U=Vl-l(r-v), (3) 
Since the matrices 1/1 = I - L and V2 = I - U are triangular, the solves can 
be done directly via forward or backward substitution, respectively. In terms of 
computat ional  cost, a forward followed by a backward solve is approximately as 
expensive as a multiplication with M (required in the unpreconditioned method).  

As a result, the SSOR-preconditioned BiCGstab-method (as well as other 
Krylov subspace methods) can be implemented with basically the same amount  
of work per iteration as in the unpreconditioned method. Any occurence of a 
matr ix  vector multiply in the unpreconditioned method is replaced by a forward 
and a backward solve in the preconditioned method,  see Algorithm 1. 

2.3 O r d e r i n g  

The generic form of the Wilson fermion matr ix  M can be seen from the relation 

(M¢)x  = Cx - ~; m~,x_ ,¢x_  , ~,~+,¢~+,  , (4) 
\ # : 1  / 

where x is an index for the (4-dimensional) grid coordinate, and x ± #, # = 
1 , . . . ,  4 stands for the nearest neighbors in dimension # on the grid (periodic at 
the boundaries). At each grid point x we have 12 variables, i.e. Cx E C 12, and 
the coupling matrices mx-~_~ and + rex,x+ ~ are of the form 

"~- ,x - ,  = ( I  + ~,)  ® V ~ ( x  + ~), ,~+~,~_~ = ( I  - "y,) ® U A x  ). 

Here, the Ua (x) are 3 x 3 matrices from SU(3) which represent the gluonic degrees 
of freedom on the lattice. The matrices 7~ are 4 x 4 Dirac matrices. 

We have the freedom to choose any ordering scheme for the lattice points 
x. Different orderings yield different matrices M,  permntat ionally similar to 
each other. The efficiency of the SSOR preconditioner depends on the ordering 
scheme chosen. If we assume an arbi t rary numbering (ordering) of the lattice 
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{ initialization } 
choose ¢0, set r0 = ¢ - M e  ° 
solve (I  - L)~0 ---- r0 to get ~o { forward solve } 
r 0  ~ r 0  
set p o = P l - - - - a o = w o = l  
set v0 =- ~5o = 0 
{ iteration } 
for i = 1 ,2 , . . .  

2?~  
Pi  = r o ? ' i - 1  

"~ = ( p i / p i - 1 ) ( o ~ i - 1 / w i - 1 )  

solve ( I  - U) z i  =/5i to get zi { backward solve } 
solve (I - L)~i = Pi - zi to get ~i { forward solve } 

a i  = p~/rov~ 

solve ( I  - U)y i  = ~i to get yi { backward solve ) 
solve (I - L)~i -- si - yi to get ~i { forward solve } 

~ = ~ / ~  
~ = ~ i - 1  + wiy l  + a l  z i  

end for 

A l g o r i t h m  1 SSOR precondi t ioned BiCGstab.  Due to the Eisenstat  trick, only 
backward  and forward solves are present,  no mat r ix  vector  mult ipl icat ions 

points,  then,  considering a given grid point  x, we find tha t  the corresponding 
row in the  mat r ix  L or U contains exactly the coupling coefficients of those 
nearest  neighbors of x which have been numbered  before or after x, respectively. 

Therefore,  a generic formulat ion of the forward solve for this ordering is given 
by Algor i thm 2. The  backward  solves are done similarly, now running  th rough  
the grid points in r e v e r s e  order and taking those grid points  x ± tt which were 
numbered  a f t e r  (instead of before)  x .  

2.4  O d d - e v e n  p r e c o n d i t i o n i n g  

A par t icular  ordering for M is the odd-even scheme where lat t ice sites are col- 
lected in two groups according to their color in a checkerboard-like coloring. 
The  SSOR precondit ioner  for this scheme hi ther to  was considered as the only 
successful precondit ioner  for lattice QCD in a parallel comput ing  environment .  
For this par t icular  ordering the inverses of I - L and I - U can be de termined 
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for all grid points x in the given order 
{ update y~ } 
y~ = p~ 
for # =  1 , . . . , 4  

if x - # was numbered before x then 
m + Yx = Y x + n "  ~,~_~y~_~ 

for # = 1 , . . . , 4  
if x + # was numbered before x then 

for all colors in lexicographic order 
for all processors 

x := site of that  color 
{ update y= } 
y~ = p=+ 

n ( ~ , ,  =-~ <n ~ m+,=-t'Y=-" 

+ ~ ,  ~+u <u x m~-,~+uY=+~) 

A l g o r i t h m  2 Generic forward solve and//-forward solve 

directly. Wi th  the odd-even ordering, the matr ix  M has the form 

( M = -roDeo 

so tha t  

and 

Hence 

I - L = - t~Deo ~ roDeo 

I - U =  , therefore ( I - U )  -1 = \ 0  I " 

(i o ) 
( I - L ) - I M ( I - U )  -1 = O I - a 2 D ~ o D o e  ' 

where I - tc2DeoDoe is called the matr ix  of the odd-even reduced system. 

(5) 

2.5 L e x i c o g r a p h i c  o r d e r i n g  

The  Oyanagi  precondit ioner  considers M to  be given with respect  to the na tura l  
(lexicographic) ordering of the lattice points. This means tha t  grid point  x = 

• l " !  ' l  (il,  i2, i3, i4) is numbered  before x '  = (h ,  '2, z3, i~) if and only if (i4 < i~) or (i4 = 
i~ a n d i 3  < i ~ )  or ( i4=z4,"  ~3" = i ~  a n d i 2  < i ~ )  or ( i4=i~4, i3  = i ' 3 , i 2  =z~" and 
il  < i~). Oyanagi  [8] showed tha t  SSOR precondit ioning for the lexicographic 
ordering yields a fur ther  improvement  over odd-even precondit ioning as far as the 
number  of  i terat ions is concerned 2. Unfortunately,  the parallel implementa t ion  
of Oyanag i ' s  me thod  on local memory  machines is very difficult and not  efficient. 

2 Actually, he employed ILU preconditioning. This turns out to be identical to SSOR 
in our case, however. 
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Fig. 1. Locally lexicographic ordering and forward solve in 2 dimensions 

3 P a r a l l e l  S S O R  P r e c o n d i t i o n i n g  

The novel type of ordering we propose is adapted to the parallel computer used 
to solve equation (1). We assume that  the processor connectivity is as a Pl × P2 × 
P3 × P4 4-dimensional grid (allowing Pi = 1 for certain i). The space-time lattice 
can be matched to the processor grid in an obvious natural manner, producing 
a local lattice of size n~ °c × nt2 °c × nl3 °c × hi4 °c with n~ °c = n d p i  on each processor. 
The whole lattice is divided into nlOC = nlZO~n21O~n3tOCn4tOC groups. Each group 
corresponds to a fixed position of a site in the local grid, and a different color is 
associated with each of the groups, see Figure 1. 

Let us consider the alphabetic ordering of the colors a - q in Figure 1. Such 
an ordering is termed locally lexicographic. All nearest neighbors of a given grid 
point have colors different from that  point. This implies that  when performing 
the forward and backward solves in Algorithm 1, grid points having the same 
color can be worked upon in parallel, thus yielding an optimal parallelism of p, 
the number of processors. 

A formulation of the / l - forward  solve is given as Algorithm 2. Here, we use 
'_<lL' as a symbol for ' ll-less than' .  For grid points lying in the 'interior' of each 
local grid, we have x - #  ~u x _<u x + # for # = 1 , . . . , 4 .  The update in the 
forward solve ( I  - L ) y  = p thus becomes 

m ÷ 

\ t t = l  

whereas on the 'local boundaries' we will have between 0 (for the/ / - f i rs t  point) 
and 8 (for the / l - las t  point) summands to add to Px. 

The /l-forward and /l-backward solves can be carried out in parallel syn- 
chronously for the members of each color. The parallelism achieved is p and thus 
less than with the odd-even ordering but it is optimal since we have p proces- 
sors. If we change the number of processors, the/ l -order ing,  and consequently 
the properties of the corresponding LL-SSOt~ preconditioner will change, too. 
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4 R e s u l t s  

Our numerical tests of the locally lexicographic SSOR preconditioner (LL-SSOR) 
have been performed on APE100/Quadrics  machines, a SIMD parallel architec- 
ture with next-neighbor connectivity. We had access to a 32-node Quadrics Q4 
and a 512-node Quadrics QH4. 

In Fig. 2a, three different iteration numbers for a given thermalised QCD 
background field configuration corresponding to 3 different quark masses are 
given. The s tandard BiCGstab solution of (1) is compared with the odd-even 
preconditioned method and the new locally lexicographic ordering scheme. The 
measurements  are carried out on a lattice of size 83 × 16, hence the computat ional  
problem is of granularity g = N/p = 256 on the Quadrics Q4 with 32 nodes. 
The gain in iterations is more than a factor of 2 for the ~-parameter  values cho- 
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Fig. 2. Iteration numbers of unpreconditioned BiCGstab . ,  the odd-even- + and the 
//-preconditioned [] version for a series of condition numbers on a 83 x 16 lattice. The 
second plot shows the dependence of iteration numbers on the local lattice size. 

sen from a realistic setting and this translates into slighly smaller but  similar 
gains in run t ime on the Q4. Compared to the unpreconditioned BiCGstab the 
gain is even a factor of 4. The convergence stopping criterion was to test  for 
Ilr112/11¢112 < ~, where r is the preconditioned residual in the case of the precon- 
ditionmed methods. In either method we took e = 10 - s ,  for the preconditioned 
methods we also verified that  the unpreconditioned residuals Mx - ¢, calculated 
explicitly from the solution x, also satisfied the stopping criterion. 

The dependence of the iteration numbers on the local lattice size is depicted 
in Fig. 2b. Here the hopping parameter  (controlling the condition number and 
the quark mass) of the matr ix  M is t~ = 0.1575, closer to the critical value 
for which M becomes singular. The smallest local lattice size we can investigate 
within LL-SSOR is a 24 lattice. The unpreconditioned case can be interpreted as 
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having local lattice size 1 and the odd-even preconditioning having local lattice 
size 2. As expected, smaller local lattices lead to a less efficient preconditioning. 
Eventually, for local= global lattice size, Oyanagi's results can be recovered. 

5 O u t l o o k  

The parallel preconditioning scheme presented here has been proven very effi- 
cient in a large scale lattice QCD simulation, the SESAM project. Currently, we 
are investigating the application of LL-SSOR preconditioning to so-called im- 
proved actions, i.e., new discretisation schemes that  are able to improve lattice 
discretisations on the quantum level. 
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