Skip to main content

Extremal problems for geometric hypergraphs

  • Session 4a: Invited Presentation
  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1178))

Included in the following conference series:

Abstract

A geometric hypergraph H is a collection of i-dimensional simplices, called hyperedges or, simply, edges, induced by some (i+1)-tuples of a vertex set V in general position in d-space. The topological structure of geometric graphs, i.e., the case d=2, i=1, has been studied extensively, and it proved to be instrumental for the solution of a wide range of problems in combinatorial and computational geometry. They include the k-set problem, proximity questions, bounding the number of incidences between points and lines, designing various efficient graph drawing algorithms, etc. In this paper, we make an attempt to generalize some of these tools to higher dimensions. We will mainly consider extremal problems of the following type. What is the largest number of edges (i-simplices) that a geometric hypergraph of n vertices can have without containing certain forbidden configurations? In particular, we discuss the special cases when the forbidden configurations are k intersecting edges, k pairwise intersecting edges, k crossing edges, k pairwise crossing edges, k edges that can be stabbed by an i-flat, etc. Some of our estimates are tight.

Research supported in part by DST-SR-OY-E-06-95 grant, India

Research supported by NSF grant CCR-94-24398, PSC-CUNY Research Award 663472, and OTKA-4269.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi. Crossing-free subgraphs. Ann. Discrete Math. 12 (1982), 9–12.

    Google Scholar 

  2. P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir. Quasi-planar graphs have a linear number of edges. In: Graph Drawing '95, Lecture Notes in Computer Science 1027, Springer-Verlag, Berlin, 1996, 1–7. Also in: Combinatorica (to appear).

    Google Scholar 

  3. J. Akiyama and N. Alon. Disjoint simplices and geometric hypergraphs. Combinatorial Mathematics (G. S. Bloom et al., eds.), Annals of the New York Academy of Sciences 555 (1989), 1–3.

    Google Scholar 

  4. B. Aronov, B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and R. Wenger. Points and triangles in the plane and halving planes in space. Discrete and Computational Geometry 6 (1991), 435–442.

    Google Scholar 

  5. I. Bárány, Z. Füredi, and L. Lovász. On the number of halving planes. Combinatorica 10 (1990), 175–183.

    Article  Google Scholar 

  6. K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl. Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom. 5 (1990), 99–160.

    Article  Google Scholar 

  7. T. K. Dey. On counting triangulations in d dimensions. Computational geometry: Theory and Applications. 3 (1993), 315–325.

    Google Scholar 

  8. T. K. Dey and H. Edelsbrunner. Counting triangle crossings and halving planes. 9th Sympos. Comput. Geom. (1993), 270–273. Also: Discrete and Computational Geometry 12 (1994), 281–289.

    Google Scholar 

  9. P. Erdős. On extremal problems on graphs and generalized graphs. Israel J. Math. 2 (1964), 183–190.

    Google Scholar 

  10. G. Károlyi, J. Pach, and G. Tóth. Ramsey-type results for geometric graphs. 12th Sympos. Comput. Geom. (1996). Also in: Discrete and Computational Geometry (to appear).

    Google Scholar 

  11. Y. Kupitz. Extremal Problems in Combinatorial Geometry, Aarhus University Lecture Notes Series 53, Aarhus University, Denmark, 1979.

    Google Scholar 

  12. F. T. Leighton. Complexity Issues in VLSI, Foundations of Computing Series, MIT Press, Cambridge, Mass., 1983.

    Google Scholar 

  13. R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM J. Applied Mathematics 36 (1979), 177–189.

    Article  Google Scholar 

  14. L. Lovász. On the number of halving lines. Annales Universitatis Scientarium Budapest, Eötvös, Sectio Mathematica 14 (1971), 107–108.

    Google Scholar 

  15. J. Pach. Notes on geometric graph theory. DIMACS Ser. Discr. Math. and Theoret. Comput. Sc. 6 (1991), 273–285.

    Google Scholar 

  16. J. Pach and P. K. Agarwal. Combinatorial Geometry, Wiley, New York, 1995.

    Google Scholar 

  17. J. Pach and M. Sharir. On the number of incidences between points and curves (to appear).

    Google Scholar 

  18. J. Pach, F. Shahrokhi, and M. Szegedy. Applications of crossing numbers. 10th ACM Sympos. Comput. Geom. (1994), 198–202.

    Google Scholar 

  19. J. Pach, W. Steiger, and M. Szemerédi. An upper bound on the number of planar k-sets. Discrete and Computational Geometry 7 (1992), 109–123.

    Google Scholar 

  20. J. Pach and J. Törőcsik. Some geometric applications of Dilworth's theorem. 9th Sympos. Comput. Geom. (1993), 264–269. Also in: Discrete and Computational Geometry 12 (1994), 1–7.

    Google Scholar 

  21. L. A. Székely, Crossing numbers and hard Erdős problems in discrete geometry. Combinatorics, Probability, and Computing, (to appear).

    Google Scholar 

  22. E. Szemerédi and W. T. Trotter. Extremal problems in discrete geometry. Combinatorica 3 (1983), 381–392.

    Google Scholar 

  23. E. Szemerédi and W. T. Trotter. A combinatorial distinction between the Euclidean and projective planes. European J. Combinatorics 4 (1983), 385–394.

    Google Scholar 

  24. R. Tamassia and I. Tollis (eds.). Graph Drawing, Lecture Notes in Computer Science 894, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  25. S. Vrećica and R. Živaljević. New cases of the colored Tverberg's theorem. In: Jerusalem Combinatorics '93, Contemp. Math. 178, Amer. Math. Soc., Providence, 1994, 325–334.

    Google Scholar 

  26. R. Živaljević and S. Vrećica. The colored Tverberg's problem and complexes of injective functions. J. Combin. Theory Ser. A 61 (1992), 309–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tetsuo Asano Yoshihide Igarashi Hiroshi Nagamochi Satoru Miyano Subhash Suri

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dey, T.K., Pach, J. (1996). Extremal problems for geometric hypergraphs. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds) Algorithms and Computation. ISAAC 1996. Lecture Notes in Computer Science, vol 1178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009486

Download citation

  • DOI: https://doi.org/10.1007/BFb0009486

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62048-8

  • Online ISBN: 978-3-540-49633-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics