Skip to main content

The equivalence problem for N.T.S. languages is deoidable

  • Contributed Papers
  • Conference paper
  • First Online:
Theoretical Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 145))

  • 114 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. BEERI, An improvment of Valiant's decision procedure for equivalence of deterministic finite-turn pushdown machines, Theoretical Computer Science 3 (1976), p. 305–320.

    Google Scholar 

  2. J. BERSTEL, Congruences plus que parfaites et langages algébriques, Séminaire d'Informatique Théorique L.I.T.P. (1975–1977) p. 123–147.

    Google Scholar 

  3. L. BOASSON, Dérivations et réductions dans les grammaires algébriques

    Google Scholar 

  4. L. BOASSON, G. SENIZERGUES, N.T.S. Languages are congruential and deterministic, to appear.

    Google Scholar 

  5. R. BOOK, Confluent and other types of Thue systems, J.A.C.M. Vol. 29, No 1, January 1982, pp. 171–182.

    Google Scholar 

  6. S. EILENBERG, Automata, Languages and Machines, Ac. Press (1976)

    Google Scholar 

  7. C. FROUGNY, Thèse de 3ème Cycle, Une famille de langages algébriques congruenciels, Les langages à non-terminaux séparés, Paris 1980.

    Google Scholar 

  8. J.E. HOPCROFT, A.J. KORENJAC, Simple deterministic languages, I.E.E.E, 7 th Symp. on switching and automate theory, p. 36–46 (1966).

    Google Scholar 

  9. M. NIVAT, M. BENOIT, Congruences parfaites et quasi-parfaites, Séminaire Dubreil, 25ème année, 1971–72.

    Google Scholar 

  10. M. NIVAT, Y. COCHET, Une généralisation des ensembles de Dyck, Israel J. of Maths 9 (1971), p. 389–395.

    Google Scholar 

  11. M. OYAMAGUCHI, Y. INAGAKI, N. HONDA, The equivalence problem for real-time strict deterministic languages, Information and Control 45 (1980), p. 90–115.

    Google Scholar 

  12. G. SENIZERGUES, Thèse de 3ème cycle, Décidabilité de l'équivalence des grammaires N.T.S, Paris 1981.

    Google Scholar 

  13. L.G. VALIANT, The equivalence problem for deterministic finite-turn pushdown automata, Information and Control 25, (1974), p. 123–133.

    Google Scholar 

  14. L.G. VALIANT, M.S. PATERSON, Deterministic one-counter automata, J. Computer System Science 10, p. 340–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Armin B. Cremers Hans-Peter Kriegel

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Senizergues, G. (1982). The equivalence problem for N.T.S. languages is deoidable. In: Cremers, A.B., Kriegel, HP. (eds) Theoretical Computer Science. Lecture Notes in Computer Science, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036491

Download citation

  • DOI: https://doi.org/10.1007/BFb0036491

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11973-9

  • Online ISBN: 978-3-540-39421-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics