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Abstract

We present new results in axiomatic group theory obtained by using automated
deduction programs. The results include single axioms, some with the identity and _"_
others without, for groups of exponents 3, 4, 5, and 7, and a general form for single
axioms for groups of odd exponent. The results were obtained by using the programs
in three separate ways: as a symbol,ic calculator, to search for proofs, and to search for
counterexamples. We also touch on relations between logic programming and automated
reasoning.

1 Introduction

A group of exponent n is a group in which for all elements _, x n is the identity e. Groups

of exponent 2, zx = e, are also called Boolean groups. A single axiom for an equational

theory is an equality from which the entire theory can be derived by equational reasoning.
We are concerned with single axioms for groups of exponent n, n >__2. B. H. Neumann

[6, p.83] gives a general form for single axioms for certain subvarieties of groups, including

exponent groups. The axioms it produces are very long, they contain inverse, and they
do not contain the identity. We sought shorter axioms without inverse, some without and

others with identity. When we started the study, we knew of simple single axioms for

Boolean groups [3]. Since then, we have found many single axioms, not containing the

identity, for exponents 3, 5, and 7, and a general form for groups of odd exponent. We
have also found single axioms, containing the identity, i0r exponents 2 and 4 and for odd

n, 3_< n_< 17.

We made extensive use of three types of symbolic computation in discovering the axioms.

First, the automated deduction program OTTER [1, 4] was used as a symbolic calculator,
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performing strictly algorithmic deductions, to generate sets of candidate single axioms.

We consider such use to be a type of logic programming. Second, OTTER also played its

traditional role as a theorem prover, to attempt to show that candidates are in fact single

axioms. Third, the program FINDER [7] was used to search for counterexamples, to show

that candidates are not single axioms.

The first two types of computation listed above illustrate our view on the relationships

between logic programming and automated reasoning [8]. Although the theoretical founda-

tions of the two areas are closely related and the implementation methods can be similar,

practical apphcations are usually far apart, with logic programming relying on algorithmic
deduction, and automated reasoning on less-focused search.

Several of the methods we used are based on recent work in which single axioms were

discovered for the left group and right group calculi [2] and for several axiomatizations of

ordinary groups and Abelian groups [3].

2 Axiomatizations of Exponent Groups

Throughout the paper, e is the group identity, (x. y) is product, z -1 is inverse, and x r` is

right-associated.

The variety of groups of exponent n, n > 1, can be a.xiomatized with the following set
of three equalities.

(x. y). z = x. (y. z) associativity (2.1)

e. x = x left identity (2.2)

x n = e exponent property (2.3)

(Inverse is not required, because z -1 = x '_-1. Also, left identity can be replaced with right
identity x • e = x.) ttowever, the identity e need not be mentioned, for the following set
a×iomatizes the same structures.

(x . y) . z -- x . (y . z) associativity
yn. x = x left identity without e (2.4)

x n = yn exponent property without e (2.5)

(Again, left identity can be replaced with right identity x. y't - x.)

An equality c_ =/3 is a single axiom for groups of exponent n if and only if it holds in

groups of exponent n and one of the above sets can be derived from it. (It is known that

either acr/3 must be a variable.) Note that the mirror image of a single axiom, obtained

by flipping arguments of all occurrences of product, is also a single axiom.

3 Programs Used

OT'rEIt is a reso]ution/paramodulation automated deduction system for first-order logic
with equality. As well as its normal role of searching for proofs, OTTER can be "pro-

gramme(l" to perform symbolic computation tasks. We list here examples of tasks that

arose during our study of exponent groups and that can be addressed by "programming"
OTTER.



• Given a string of terms, construct the set of products of the terms with all possible

associations. For example, a string of length 5 produces a set of 14 associations.

• Given term t, construct {$'lt' can be obtained from t by inserting one occurrence of

c}.

• Given a set of equalities, rewrite each with z -1 = x. x .z; then paramodulate one

level from the left argument of x. x. x. z = e.

• Given a set of equalities, generate 10,000 consequences of the set; then extract equal-
ities with three distinct variables and one occurrence of e.

The preceding methods and others were used to generate sets of candidate single axioms

for exponent groups.

We used OTTER aS a theorem prover to attempt to show that candidates are single

axioms. The search strategy was based on Knuth-Bendix completion, and it included the

following enhancements.

• Equalities that could not be oriented into rewrite rules were allowed to participate in
the search.

• We placed a limit on the length of equalities. The limit for each case was typically

determined by experimentation.

• We used the ratio strategy [5], which combines best-first search and breadth-first

search, for selecting the next equality for application of paramodulation.

• Denials of the associativity, identity, and exponent properties were input, but they

did not participate in the searches. They were used only to detect proofs.

• We occasionally pruned the search based on our intuition.

When working on a particular type of candidate, we ran individual OTTER. jobs, carefully

tuning the strategy. In contrast, with a set of, say, 1000 candidates we would fix the strategy
and automatically run a sequence of 1000 OTTER searches, each with a small time limit.

FINDER [7] is a program that searches for models of sets of first-order clauses. Given a
candidate, ii' F1NDER produces a model violating a group property or the exponent property,

the candidate is not a single axiom. Most of our useful assistance from FINDER was with

jobs of less than one minute, finding models of less than five elements.
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4 Results

4.1 Single Axioms without the Identity

For groups with exponent 2, we already knew short single axioms [3], for example,

((x. y). z).(x, z)= y. (4.t)



In contrast to (4.1), the a_xiom produced by B. H. Neumann's general form contains 14
occurrences of product and 9 occurrences of inverse, and we have not been able to verify it
with OTTER.

For exponenl. 3, we quickly found the following, each of which is a single axiom, by

considering M1 associations of xzxyzzz = y.

x. ((x. (x. (y. (z. z)))) • z) = y (4.2)
y). z)). z)) =y (4.3)
(y. z)). z). z) =y (4.4)

For exponent 4, we considered all associations of several strings, but we [ailed to find

short single axioms (without the identity c).

For exponent 5, we found 14 single axioms (excluding mirror images), including the

following, by considering associations of xxxxxyzzzzz -- y.

x. (x. ((x. (x. (x. (y. (z. (z. (z. z))))))) . z)) = y (4.5)

_. (_. ((x. (_. ((_. y). _))). (z. (z. (z. z))))) = y (4.6)

Odd Exponent Without Identity. We noticed a simile_rity between (4.2) and (4.5)

and conjectured that the following equalities (written without the operator and assuming

right association where parentheses are omitted) are single axioms for exponents 7 and 9,

respectively.

xxx(xxxzyzzzzzz)z = y exponent 7 (4.7)

xxxz(xxxxxyzzzzzzzz)z :7.y exponent 9 (4.8)

OTTER quickly proved the conjectures. We also verified the obvious general form for odd

exponents through 21. We noticed similarities in the OTTER proofs that (4.2), (4.5), (4.7),

and (4.8) are single axioms for exponents 3, 5, 7, and 9, respectively, and proved (by hand)

that the general forin holds for all odd exponents.

We believe that there exists another general form for groups of odd exponent that c_n

be obtained by generalizing (4.3) and (4.6), but we have not yet worked out all the details.

Even Exponent Without Identity. We failed to find any new single axioms for groups

of exponent 6 or exponent 8, and we have little intuition about general forms for single

axioms for even exponents.

4.2 Single Axioms with Identity

Our main reason for seeking single axioms with the identity for exponent groups is that

in the case of ordinary groups, single axioms exist in terms of product _md inverse, but

no single axio:ns exist in terms of product, inverse, and identity [6]. We t)elieve also that
axioms with identity are more natural and appealing.

Fbr exi)onent 2, we easily found many single axioms with one occurren.,'e of the identity

e by considering simple transformations of known single axioms without e. An example is

x. ((y. (e. z)). (x. _')) = y, (4.9)



which is also a single axiom for exponent 2 if (e. z) is replaced with z. We conjectured that

ali equality without e is a single axiom if and only if the result of inserting one occurrence
of e iii any position is also a single axiom. However, with the assistance of FINDER, we

found counterexamples to both directions of the equivalence. Results for exponent 3 were

similar to those for exponent 2. A sample single axiom for exponent 3 is

x. ((x. ((x. y). z)). (e. (z. z))) = y. (4.10)

For exponent 4, we had no single axioms without e to use as a starting point, so we
turned to brute force. We considered the 1429 associations of zxxxyzzzz = y, and for each

of those, the 17 subterms at which an occurrence of e can be inserted. By symmetry we

inserted e only to the left of the subterms and had 1429,17 = 24293 candidates, each with
one occurrence of e. With each candidate, we ran an OTTEK search with a time limit of 30

seconds. (Most searches were terminated in less than 30 seconds by the restrictive search

strategy.) One single axiom emerged:

.((z. y). z)). = y. (4.11)

Several of the other candidates derived sufficient properties except for associativity, and

when we reran those candidates with a greater time limit, nine more single a.xioms emerged.

Note that in (4.11), none of the products is applied to two products. All single axioms known
to us for exponent 4 have that property.

For exponent 6, we considered the set analogous to the exponent 4 candidates and ran
OTTER searches with a subset of those, but we failed to find single axioms.

Odd Exponent with Identity. We observed the following relationships between (4.3),

(4.6), and (4.10). Equalities (4.3) and (4.10) (both exponent 3) are similar except for e, and

(4.6) (exponent 5) has a form similar to (4.3) (exponent 3). By analogy, we conjectured

that (written without the operator and assuming right association where parentheses are

omitted)

=y (4.12)
= (4.13)

are single axioms for exponents 5 and 7, respectively. OTTER proved the required theorems.
We then conjectured theft the obvious general form holds for all odd exponents.

OTTER has checked the general form for cases through exponent 17 (the first proof for

exponent 17 required 23 hours on a SPARCstation 2 and had 181 steps), but we have not

yet worked out the details for the general proof. As in the general forms without e, we are

attempting to generalize the OTTER proofs for cases 3, 5,7,..., 17 with e, but the OTTEK

proofs with c are much more complex.

Appendix

We present here an O'rT_R proof (found in less than 1 second on a SPARCstation 2) that

(4.3) is strong enough to be a single axiom for groups of exponent 3. Equalities 88, 99, and
I04 below are sufficient properties. The justification m _ n indicates paramodulation from
,n iI,tO ,t, and :m,,t,... indicates simplification with ro, n,....
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6 _.((_.((_.y).z)).(z.4) = y [(4.3)]
8 x. (y. ((z. z). (z. z))) -- (x. y). z [6-+6]
10 (y. (y. ((y. x). (z. z)))), z = x [6_8]
13 (_.((x.(_:.y)).z)).(z.z)=y [8--,10]
15 ((x.x).x).x=z [8--,10]
19 (x. z). (((x. z). z). (x. z)) = x [15--,6]

23 (((x. x). x). (x. y)). (y. y) - x [15---,13:15]
27 (x. (z. ((z. (z. y)).(u. _)))).u= _. y [13--,81
29 (x. x). (x. ((x. x). (x. x))) '= x [19---,6]
31 (_. y)•(((y.y)•(y.y))•((y•y). (y.y)))=x [8-_23:1_]
33 (_. (((y._). y). (y.(z. z))))•z =_. y [23--,8]
40 (x. (y. z)). (z. z) = x.y [8---33:15]
47 z. (x. (z. y)) = y [13:40]
49 (x. y). z = z. (y. ((z. z). (z. z))) [33---,27:15,15]
61 (x.(y.z)).((u.u).(u.u))=x.(y.(z.u)) [40_40]

64 z. ((y. x). (y. z)) = y.y [47---,40]
76 (x. y). ((y. y). (y. (y. y))) = z [31:61]
80 (x. x). (x. z) = z [29:64]
88 (z . y) . z = x . (y. z) [49:80]

99 x. (y. (y. y)) = z [76:88,47,88]
104 x. (x. z) = y. (y. y) [99---,47]
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