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Abstract. We present an interactive system, called ISAR, which provides an environment for
correctness proofs of algebraic implementation steps. The correctness notion of implementation
is based on behavioural semantics and the underlying proof procedure of the system is based on
the principle of context induction (which is a particular instance of structural induction). The
input of the ISAR system is an implementation step consisting of an abstract specification to be
implemented, a concrete specification used as a basis for the implementation and an
implementation construction. If all steps of the (interactive) proof procedure are performed the
system has proved the correctness of the implementation step.

1 Introduction

Much work has been done in the field of algebraic specifications to provide formal
concepts for the development of correct programs from given specifications.
However, in order to be useful in practice, a formal theory of correct program
development is not sufficient: Formal implementation notions should be supplied by
appropriate proof methods and, even more important, by tools providing mechanical
support for proving the correctness of implementation steps.

In this paper an interactive system for algebraic implementation proofs, called ISAR,
is presented which sets out from the observational view of software development: The
basic assumption is that a software product is a correct implementation if it satisfies
the desired input/output behaviour, independently from the internal properties of a
program which may not satisfy a given specification. This covers well known practical
examples like the implementation of sets by lists (since lists do not satisfy the
characteristic set equations but lists have the same behaviour as sets if only
membership tests x € S are observable) or the familiar implementation of stacks by
arrays with pointer (since arrays with pointer do not satisfy the usual stack equation
pop(push(x, s)) = s but they have the same behaviour as stacks if only the top elements
of stacks are observed).

A formalization of this intuitive idea is presented in [Hennicker 90, 92} where an
implementation relation for specifications is defined based on behavioural semantics



in the sense of [Nivela, Orejas 88], [Reichel 85]. In particular, in [Hennicker 90, 92] a
proof theoretic characterization and a proof method, called context induction, is
presented for proving behavioural implementation relations. The characterization of
implementations says that a specification SP! is a behavioural implementation of a
specification SP if and only if for all observable contexts ¢ (over the signature of SP)
and for all axioms t =r of SP the "observable" equations c[t] = c[r] are deducible from
the axioms of the implementation SP! (for all ground instantiations over the signature
of SP).

It is the basic idea of the ISAR system to prove this condition by context induction,
i.e. by structural induction on the set of observable contexts, in order to show that SP1
is an implementation of SP. The underlying algorithm of the ISAR system providing a
procedure for context induction proofs was developed in [Hennicker 92].

Usually implementations of an abstract specification are constructed on top of existing
(concrete) specifications of standard data structures like lists, arrays, trees etc. In order
to document the construction of the implementation, the input of the ISAR system is
an implementation step which consists of three parts: an abstract specification SP-A to
be implemented, a concrete specification SP-C used as a basis for the implementation
and a construction of the implementation. Such constructions are represented by
appropriate enrichments and/or renamings performed on top of SP-C. An
implementation step is called correct if the application of the implementation
construction to SP-C yields a behavioural implementation of SP-A.

In order to prove the correctness of an implementation step the ISAR system first
normalizes all specification expressions. Then the context induction prover, the kernel
of the system, is called for proving the implementation relation for the normalized
specifications. Thereby all contexts and all proof obligations to be considered for the
implementation proof are automatically generated. For the proof of equations the
system is connected to the TIP system which is a narrowing-based inductive theorem
prover (cf. [Fraus, HuBmann 91]). All steps of an implementation proof can be guided
by appropriate interaction with the user. In particular, as usual when dealing with
induction proofs, it is often necessary to find an appropriate generalization of the
actual induction assertion if a nesting of context induction (implemented by a
recursive call of the context induction prover) is performed. For that purpose the ISAR
system generates automatically a set of particular contexts each context representing a
generalization of the actual induction assertion. Then the user may select an
appropriate context representing an assertion which is general enough for achieving
successful termination of the proof algorithm.

As we will show by an example for the construction of generalized induction
assertions it may be necessary to define additional function symbols which generalize
(some) functions of the abstract specification. (For instance for the proof of the array
pointer implementation of stacks a generalization of the pop operation by an operation
iterated_pop: nat, stack — stack is used where iterated_pop(n, s) performs n pop



operations on a stack s.) Such function generalizations can be added as "hints" to an
implementation step. Hints cannot be generated automatically. In this case the
intuition of the system user is needed.

2 Basic Concepts

In this section we summarize the theoretical foundations of the ISAR system. In
particular the notions of behavioural specifications and behavioural implementations
are defined. Most definitions and results of this section can be found in [Hennicker 90]
or (slightly revised) in [Hennicker 92].

2.1 Algebraic Preliminaries

First, we briefly review the basic notions of algebraic specifications which will be
used in the following (for more details see e.g. [Ehrig, Mahr 85]). A (many sorted)
signature L is a pair (S, F) where S is a set of sorts and F is a set of function symbols
(also called functions for short). To every function symbol f € F a functionality sy,...,
sn — s with s1,..., sp € S is associated. If n=0 then f is called constant of sort
s. A signature morphism p: L — ¥’ between two signatures £ = (S, F) and ’ = (S’,
F’) is a pair (Psorts, Pfuncts) Of mappings psorts:S — S’, Pfuncts: F — F’ such that for
all fe F with functionality sy, ..., sn = 8, Pfuncts(f) has functionality psorts(s1), - .-
Psorts(Sn) — Psorts(s). A signature X° = (S’, F’) is called subsignature of Z (written ¥’
cifScSandF’ ¢ F.

The term algebra Wx(X) of all Z-terms with variables of X (where X = (Xg)se§ is an
S-sorted family of sets of variables) is defined as usual. In particular, for any sort s €
S, Wx(X)g denotes the set of terms of sort s. If X = @ then Wx() is abbreviated by
Wy and Wy is called ground term algebra. We assume that any signature £ = (S, F) is
inhabited, i.e. for each sort s € S there exists a ground term t € (Wy)s. A
substitution 6: X - Wx(X) is a family of mappings (o5 X5 = Wy(X)k)seS.
For any term t € Wx(X), the instantiation o(t) =der t[o(x1)/Xy, ..., O(Xp)Vxyg] is
defined by replacing all variables x1, ..., X, occurring in t by the terms o(xy), ...,
o(xp)- A substitution 6: X — Wy is called ground substitution.

2.2 Behavioural Specifications

The syntax of behavioural specifications is defined similarly to [Nivela, Orejas 88]
and [Reichel 85] where a distinguished set of sorts of a specification is declared as
observable:

A behavioural specification SP = (£, Obs, E) consists of a signature X = (S, F), a
subset Obs < S of observable sorts and a set E of axioms. Any behavioural
specification is assumed to contain the observable sort bool, two constants true, false:
— bool (denoting the truth values) and the axiom true # false. The axioms of E\
{true # false} are equations t =r with terms t, r € Wx(X).



Specifications can be reused for the definition of new behavioural specifications by
the operators enrich for enriching a given specification by some sorts, functions and
axioms, + for the combination of two specifications and rename for renaming the
sorts and functions of a specification. More precisely we define for any behavioural
specification SP = (Z, Obs, E) with signature L = (S, F):

enrich SP by sorts S1 observable sorts Obsl functions F1 axioms E1 =def
((S uS1, F UF1),Obsu Obsl, EUEL),

SP +SP1 =def (XU X1, Obs U Obsl, E WE1) where SP1 = (X1, Obsl, E1),

rename SP by p =def (1, Pyori5(0bS), P, (E))
where p: > Zl is a bijective signature morphism and p , is the

extension of p to Z-formulas.

Note that the enrich operator is only defined if (S w S1, F U F1) forms a signature,
Obsl is a subset of S « S1 and E1 are axioms over the signature (S U S1, F U F1).
Moreover, note that in contrast to specification building operators in the sense of ASL
(cf. [Wirsing 86]) the above operators are only defined syntactically in order to
express textual abbreviations.

As an example, the following behavioural specification STACK describes the usual
data structure of stacks with a constant empty, denoting the empty stack, an operation
push for adding an element to a stack, an operation top for selecting the top element of
a stack and an operation pop for removing the top element, STACK is an enrichment
of BOOL and of an arbitrary specification ELEM of the elements of a stack. The sort
elem for the elements is declared as observable while the sort stack is not observable.
Hence, the behaviour of stacks can only be observed via their top elements.

spec STACK = enrich BOOL + ELEM by

sorts stack

observable sorts elem

functions empty: — stack,
push: elem, stack — stack,
top: stack — elem,
pop: stack — stack

axioms top(push(e, s)) =e,

pop(push(e, s}) =s endspec

2.3 Behavioural Implementations

The definition of the behavioural implementation concept is based on the assumption
that from the software user’s point of view a software product is a correct
implementation if it satisfies the desired input/output behaviour. Hence a behavioural



specification SP1 = (X1, Obsl, El) is called behavioural implementation of SP = (Z,
Obs, E) if SP1 respects the observable properties of SP. A precise formal definition of
this intuitive notion using behavioural semantics (cf. e.g. [Nivela, Orejas 88], [Reichel
85]) is given in [Hennicker 90, 92]. Since we are interested in automated
implementation proofs we will present here only the following proof theoretic
characterization of behavioural implementations (cf. [Hennicker 90, 92]) which is the
theoretical background of the ISAR system. The characterization uses the notion of a
X-context which is any term c[zg] over the signature X of SP which contains a
distinguished variable zg of some sort s € S (where zg occurs exactly once in ¢[zg]). If
the (result) sort, say sq, of c[zg] belongs to Obs then c[zg] is called observable X-
context. The application of a context c[zg] to a term t of sort s is defined by the
substitution of zg by t. Instead of c[t/zg] we also write briefly c[t]. In particular, for any
sort s, the variable zg is itself a T-context (called trivial context) of sort s and zg[t] =t.

2.1 Proposition Let SP1 = (X1, Obsl, El) and SP = (Z, Obs, E) be
behavioural specifications such that £ < X1 and Obs ¢ Obsl.
SP1 is a behavioural implementation of SP, if and only if for all observable Z-contexts
c[zg] and for all axioms (t =r) € E (such that t and r are of sort s),

SP1 |- o(c[t]) = o(c[r]) holds for all ground substitutions ¢: X - Wyx.

In the above proposition SP1 |- o(c[t]) = o(c[r]) means that the equation G(c[t]) =
o(c[r]) is deducible from the axioms of the implementation SP1 by the usual axioms
and rules of the equational calculus, cf. e.g. [Ehrig, Mahr 85]. (The additional
derivation rule (R) of [Hennicker 92] is only relevant for the necessity of the
implementation condition if the implementation is inconsistent.) Since behavioural
semantics in [Hennicker 90, 92] is restricted to term generated algebras it is enough to
consider all ground instantiations o{(c[t]) = o(c[r]) of the equations c[t] = c[r].

Note that the "non observable" axioms t =r of an abstract specification SP need not to
be satisfied by an implementation. Only the observable consequences of those axioms
(formally expressed by applications of observable contexts) have to be satisfied by an
implementation (for all ground substitutions). For instance, an implementation of the
specification STACK not necessarily has to satisfy the non observable stack equation
pop(push(e, s)) = s but it has to satisfy all (ground instantiations of) applications of
observable contexts to this equation as e.g. G(fop(pop(push(e, 5)))) = 6(top(s)) with G:
X Wy,

3 The ISAR System
3.1 Implementation Proofs by Context Induction

Proposition 2.1 provides the starting point for an automatization of implementation
proofs since it gives a proof theoretic characterization of behavioural implementations



where certain equations have to be derived from the axioms of the implementation. In
particular, the proposition says that it is sufficient to show that all ground
instantiations o(c[t]) = o(c[r]) of the equations c[t] = c[r] are valid in the
implementation SP1, Hence it is enough to prove that the equations c[t] = c[r] are
inductive theorems of SP1 where an equation ¢ is called inductive theorem of SP1 if
all ground instantiations of e are theorems of SP1, i.e. SP1 |- o(e) for all ground
substitutions o: X — Wy (cf. [Padawitz 88]). (Note that the inductive theorem
property is slightly stronger than the condition of Proposition 2.1 since there only
ground substitutions o w.r.t. the subsignature £ ¢ Xl are considered.) Then, for the
proof of inductive theorems one may use theorem provers like the prover of Boyer and
Moore (cf. [Boyer, Moore 88]) or the Larch Prover (cf. [Garland, Guttag 89]).

However, things are not that easy because, in general, infinitely many observable
contexts exist and therefore one has to prove usually infinitely many equations c[t] =
c[r]. Hence, for proving that SP1 is a behavioural implementation of SP, it is enough
to show that the following property P(c[zg]) is valid for all observable Z-contexts

c[zs):

P(c[zg]) =true <>def for all axioms (t =r) € E (such that t, r are of sort s),
the equation c[t] = c[r} is an inductive theorem of SP1,

Since observable 3-contexts are particular terms (over the signature of the abstract
specification) the syntactic subterm ordering defines a Noetherian relation on the set
of observable Z-contexts and therefore we can apply context induction (which is a
particular instance of structural induction, cf. [Burstall 69]) for showing the validity of
P(c[zg]) for all observable Z-contexts c{zg].

It turns out that in many cases implementation proofs by context induction work quite
schematically although usually a lot of different cases of contexts have to be
distinguished. Hence it is the aim of the ISAR system to provide a tool which
automates (to a certain extent) implementation proofs by context induction. The
principle idea for executing implementation proofs by the ISAR system is the
following one: (For a detailed description of the underlying algorithm of the system
we refer to [Hennicker 92].)

Let SP and SP1 be as above. In the first step (which is the base of the context
induction) it has to be shown that P(z) is valid for all trivial observable Z-contexts zg
(which just are variables of observable sort s). According to the definition of the
property P this means that one has to prove that all "observable" axioms t = r of SP
(with terms t and r of observable sort) are inductive theorems of SP1. For the proof of
the equations the ISAR system is connected to the TIP system (cf. [Fraus, HuBmann
91]) which 1s a narrowing-based inductive theorem prover.

In the second step, the induction step is performed for all contexts of the form
f{...,c[zs],...) where fis a function symbol of SP with observable result sort and c[z]



ranges over all Z-contexts of sort, say sj. Then, for the proof of the actual induction
assertion it has to be shown that for all X-contexts c[zg] of sort sj, P(f...,c[zg),...))
holds, i.e. for all axioms t = r of SP (such that t, r are of sort s) the equation
f(...,c[t],...)=f{...,c[r],...) is an inductive theorem of SP1. For that purpose two cases
are distinguished:

Case 1. sjis an observable sort of SP. Then, by hypothesis of the context induction,
P(c[zg]) holds, i.e. c[t] = c[r] is an inductive theorem of SP1 for all axioms t = r of SP.
Hence f(...,c[t]....) =f{(...,c[r],...} is also an inductive theorem of SP1 for all axioms t
=r of SP, i.e. P(f...,c[zg],...)) holds.

Case 2: si is not an observable sort of SP. Then, the hypothesis of the context
induction cannot be applied for ¢[zg] and therefore a nested context induction (over all
Z-contexts c[zg] of sort sj) is performed for proving the pr0perty P(f{...,e[zg],...)) for
all Z-contexts c[zg] of sort s;.

In the ISAR system each nesting of context induction is implemented by a recursive
call of the context induction prover where the actual parameter is a (fixed) context
c0[zg;] which represents the actual induction assertion "P(c0[c[zg]]) is valid for all Z-
contexts c[zg] of sort s;i". (For instance, the induction assertion "P(f{...,c[zg],...)) 1s
valid for all Z-contexts c[zs] of sort si" is represented by the context f{...,zs4,...).)
Initially the context induction prover is called for all trivial contexts zg, of observable
sort sg € S. Then, if all steps of the proof procedure are performed the principle of
context induction implies that the property P(c{zs]) is proved for all observable X-
contexts ¢[Zg] and hence it is shown that SP! is a behavioural implementation of SP.
Obviously, the proof algorithm of the ISAR system cannot be complete (in the sense
that all valid implementation relations can be proved by ISAR) because context
induction and inductive theorem proving are not complete.

In order to achieve successful termination of the implementation proof it is often
necessary to find an appropriate generalization of the actual induction assertion,
Therefore automated reasoning has to be supplemented by interaction with the user
who may select before each nesting of context induction a context which represents a
generalization of the actual induction assertion. For instance, any subcontext c0’[zg;{]
of a context c0[zg;] represents a generalization of the assertion represented by c0[zg;]
because it is easy to show (using the congruence rule of the equational calculus) that
in this case P(c0’[c[zs]]) implies P(cO[c[zg]]) for all Z-contexts c[zg] of sort 5. Hence,
instead of c0[zg;] any subcontext ¢0’[zs{] can be correctly used as an actual parameter
of a recursive call of the proof algorithm.

The ISAR system generates automatically before each nesting of context induction all
subcontexts of the context c0[zg;] which represents the actual induction assertion and
the user may choose an appropriate one. Besides the generalization of contexts by
subcontexts there are two further constructions of context generalizations performed
by the ISAR system: The first one allows to abstract from a context cO{zg by



replacing subterm(s) of cOfzg] (which do not contain zg) by variables. The second one
allows to construct new contexts by applying rewrite steps to the original context
c0[zg]. An example for the generation of context generalizations can be seen in the
implementation proof of Section 3.3.

3.2 Implementation Steps

Usually the implementation of an abstract specification is constructed on top of
already existing specifications of concrete data structures like lists, arrays, trees etc.
(see e.g. [Ehrig et al. 82], [Sannella, Tarlecki 88] for formalizations of implementation
constructions). In order to document the construction of the implementation the input
of the ISAR system is the description of an implementation step consisting of three
parts: an abstract specification SP = (X, Obs, E) to be implemented, "a concrete
specification SP-C = (Z-C, Obs-C, E-C) used as a basis for the implementation and a
construction of the implementation on top of SP-C. The implementation construction
can be defined by some enrichment and/or renaming of SP-C. For instance, the
following implementation step performs first a renaming of SP-C w.r.t. a signature
morphism p and then an enrichment A = sorts S1 observable sorts Obs1 functions
F1 axioms E1 of the renamed version of SP-C:

implementation step SP_by_ SP-C =
SP is implemented by SP-C
via renaming p, enrichment A
endimplstep

Such an implementation step is called correct if

enrich (rename SP-C by p) by A is a behavioural implementation of SP,
The correctness of implementation steps when performing first an enrichment and
then a renaming is defined analogously. Before starting an implementation proof the
normalizer of the ISAR system computes normal forms of all specifications according
to the definition of the operators enrich, rename and + (cf. Section 2.2).
In some implementation proofs it may be necessary to use particular lemmas (i.e.
theorems which are valid in the implementing specification) and even auxiliary
function definitions which are used for the construction of contexts which represent
sufficiently general induction assertions. Such lemmas and function definitions can be
added as "hints" to an implementation step. Hints cannot be generated automatically.
In this case the intuition of the system user is necessary. However, it seems that in
most examples the auxiliary functions can be created just by generalizations of those
abstract functions which would be iteratively used in recursive calls of the proof
procedure (cf. the generalization of the pop operation by the operation iterated_pop
below.)
As an example we consider an implementation step which implements stacks on top of
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the following specification of (dynamic) arrays. For simplicity only those array
operations are defined which are necessary for the example: vac denotes the empty
array, put inserts an element into an array at a particular index and get delivers the
actual value for a given index. The indices are natural numbers which are specified in
the underlying specification NAT. It is assumed that the specification ELEM of the
array elements contains a constant constelem and a conditional function ifelem . then .
else . fi: bool, elem, elem — elem.

gpaec ARRAY=
enrich BOOL + NAT + ELEM by
gsorts array
observable sorts elem
functions vac : -> array,
put : array, nat, elem -> array,
get : nat, array -» elem
axioms
get{k, put{a, 1, e}) =
ifelem eq nat(k, 1) then e else get(k, a) fi,
get(k, vac) = constelem endspec

Then the implementation of stacks on top of arrays is defined by the following
implementation step:

implementation step STACK by ARRAY =
STACK is implemented by ARRAY
via enrichment
sorts stack
functions pair : array, nat -> stack,
empty : -» stack,
push : elem, stack -> stack,
top : stack -> elem,
pop : stack -> stack
axioms
empty = pair(vac, 0),
push{e, pairf{a, p}) =
pair{put(a, p+l, e}, p +1),
topi{pairi{a, pl} get{p, a},
popipair(a, p)) pair(a, p-1)

n

hints
auxiliary functions
iterated_pop : nat, stack -> stack

axioms

iterated_pop{zero, s} = s,

iterated_popi(n+l, s) = iterated_pop(n, pop(s))
lemmas

iterated_pop(i, pair{a,n)) = pair{a, n-i)

endimplstep
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In the above implementation construction stacks are implemented by their familiar
array pointer representation, i.e. by pairs consisting of an array and a pointer (a natural
number) which points to the top element of a stack. The stack operations empty, push,
top and pop are implemented as usual. For instance, the pop operation simply
decrements the pointer without deleting the entry at the last top position. Hence the
abstract stack equation pop(push(e, s)) = eis not valid in the implementation. But we
will see that nevertheless the implementation step is correct since the implementation
satisfies all observable consequences of the abstract stack equations. The usefulness
and necessity of the hints will be seen in the following when the implementation proof
is performed by the system.

3.3 An Example Session with the ISAR System

After the ISAR system is called we first give a command for reading the file where the
implementation step STACK_by_ARRAY together with the specifications STACK
and ARRAY is stored. After syntactical analysis all specifications and the
implementation step are normalized and it is checked whether the signature and the
observable sorts of the abstract specification are included in the (normalized)
implementation because this is the precondition of our implementation definition. It is
possible to display all specifications and the implementation step in their normal form
and in their structured form using the commands 1ist norm or list struct.
Now the implementation proof can be started by calling the context induction prover.,
In the following we will show how the system performs the implementation proof and
we will give detailed comments - written in ifalics - which do not belong to the output
of the system.

kxknkd* CONTEXT-INDUCTION *****%

Ohservable Sorts of STACK:
bool, elem

*k**% PROOF-OBLIGATION: **%%x+

FOR ALL CONTEXTS ¢ OF SORT bool, elem AND FOR ALL AXIOMS t=r OF
STACK IT IS TO SHOW:

IMPLEMENTATION |- c(t] = clr]

(This is exactly the property P(c) defined in Section 3.1 (since
induction is allowed for the derivation). In the next step the
axioms of STACK are considered explicitely. Thereby the axioms
of the underlying specifications BOQOL and ELEM are omitted
because these axioms belong already to the iImplementation. The
variables X29, X30, ... are system variables.)

THE FOLLOWING EQUATIONS HAVE TO BE PROVED
FOR ALL CONTEXTS c¢ OF SORT bool, elem:
cl{top({push(X29, X30))] = c[X29] (1f the context variable zg
has sort s = elem) )
c[pop(push(X31, Xx32))] = c[X32] (if the context variable zg
has sort s = stack)
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: BASE OFOTEE CONTEXT INDUCTION FOR CONTEXTS OF SORT: hool, elem
DEPTH:
ONLY THE OBSERVAEBLE AXIOMS HAVE TO BE PROVED

(For the base of the context induction the property P(Zelem) has
to be proved where zelem is the trivial context of sort elem.
Note that P(zpppl} is trivially satisfied since no axiom of sort
boocl is considered.)

* PROOF OBLIGATIONS:
(1): top(push(X29, X30)) = X29

ISAR/PROQOF>all
(The command "all* says that all eqguations of the proof
obligation - here only one exists - are selected to be proved.

For the proof of the equation the ISAR system calls the TIP
system. )

top({push(X29, X30})) = X29
# EQUATICN PROVED BY TIP-SYSTEM.

{The proof of this equation is performed by induction on the
structure of X30 where the function ‘"pair" 1is used as a
constructor for stacks. In general, constructors can be chosen
interactively during the TIP proof or they can be declared
previously in the implementing specification. Constructor
completeness can be checked by the TIP system and a listing of
the TIP proof can be displayed if required.)

* BASE OF THE CONTEXT INDUCTION OF DEPTH O FINISHED

*CONTEXT INDUCTION STEP FOR CONTEXTS OF SORT: bool, elem
* DEPTH: 0

(It is enough to perform the induction step for contexts with
outermost function symbol top. For all other function symbols of
STACK with result bool or elem the argument sorts are observable
as well and hence the induction step is trivial.)

* THE FOLLOWING ABSTRACT FUNCTION WITH OBSERVABLE RESULT-SORT
* HAS TQO BE CONSIDERED
(l): top : stack -> elem

ISAR/PROOF>all
Selected function: top : stack -> elem

(At this point the actual induction assertion to be proved by a
nested context induction 1is: “"P(top(c)) 1is wvalid for all
contexts ¢ of sort stack”. However in the induction step of the
nested context induction contexts of the form top(pop(c)) have
to be considered but it is not possible to prove P(top(pop(c)))
using the hypothesis P({top(c)). Hence one could try to start a
second nesting of context induction for proving P(top(pop(c))).
But then the same situation occurs leading to a further
iteration of context induction for proving P(top{pop(pop(c))))
etc. Consequently, the implementation proof would not terminate.
A possible solution 1is to code the iteration of the pop
operation by an auxiliary function iterated pop: nat, stack —
gtack such that iterated pop(n, s) pops a stack s n-times. The
operation iterated pop 1s specified in the hints of the
implementation step.

Now having the hints available the ISAR system generates the
following set of contexts. Context (1) represents the original
induction assertion which was not successful. Context (2)
represent a more general induction assertion (namely: "P({c) is
valid for all contexts c¢ of sort stack”) but since the non
observable STACK axiom pop(push(e, s)) = s 1is not valid in the
implementation this assertion 1is too general. Context (3) 1is
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equivalent to context (1) by the first axiom of the hints.
Context (4) is a generalization of context (3) where the term
zero is replaced by a variable. We will see that the selection
of (4) will be successful.)

* GENERATED CONTEXTS:
(1) : top(z_stack)
(2): z_stack
(3): top(iterated _popl(zero, z_stack))
(4): top(iterated_pop (X145, z_stack))

ISAR/PROOF>sel 4
(Now the assertion represented by context (4) 1s displayed.)

*%4*%* PROOF-OBLIGATION; **%**%

FOR ALL CONTEXTS ¢ OF SORT stack AND FOR ALL AXIOMS t=r OF STACK

IT IS TO SHOW:

IMPLEMENTATION |- top(iterated_pop(X145,c[t])
top(iterated_pop(X145,c(xr])

) =
)

THE FOLLOWING EQUATIONS HAVE TC BE PROVED

FOR ALL CONTEXTS c OF SORT stack:
top (iterated_pop (X145, clpop(push(X31l, X32))])) =
top(iterated_pop (X145, c[X32]))

* BASE OF THE CONTEXT INDUCTION FOR CONTEXTS OF SORT: stack
* DEPTH: 1

(Depth 1 indicates the depth of the nesting of context induction
which is actually performed.)

* PROOF OBLIGATIONS:
(l): top(iterated_pop (X145, pop(push(x3il, X32)))) =
topl(iterated_pop (X145, X32))

ISAR/PROOF>all

top{iterated pop (X145, pop(push(X31, X32)})) =
top(iterated_pop (X145, X32))
# EQUATION PROVED BY TIP-SYSTEM.

(For the proof of this equation the lemma stated as a hint in
the implementation step is used. The proof is again performed by
induction on the structure of X32 using the constructor ‘"pair".)

* BASE OF THE CONTEXT INDUCTION OF DEPTH 1 FINISHED

* CONTEXT INDUCTION STEP FOR CONTEXTS OF SORT: stack
* DEPTH 1

* THE FOLLOWING ABSTRACT FUNCTIONS WITH RESULT-SORT stack
* HAVE TO BE CONSIDERED

{l): push : elem, stack -> stack

(2): pop : stack -> stack

ISAR/PROOF>all

Selected function: push : elem, stack -> stack
* WHICH ARGUMENT?
ISAR/PROOF>all

push : elem, stack -> stack

{Here the system does not select the first argument sort of push
gince elem is an observable sort and hence the induction step is
trivial, For the second argument sort the actual induction
asgertion to be proved is: "P(top{(iterated pop(X145, push(X729,
c)))) is valid for all contexts ¢ of sort stack." Thereby the
induction hypothesis of the nested context induction can be
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applied, i.e. one has to show that for all contexts ¢ of sort
stack, P(top(iterated pop(X145,c))) implies P(top(iterated pop
(X145, push{Xx729, c)))). For this it is enough to show for newly
introduced constants constantl_stack and constant2 stack of sort
stack that the proof obligation below can be derived from the
implementation if the following additional hypothesis is added
to the axioms of the implementation:)

* ADDITIONAL HYPOTHESIS OF THE CONTEXT INDUCTION:
top(iterated_pop (X145, constantl_stack)) =
top(iterated_pop (X145, constant2_stack))

* PROOF OBLIGATION:
top(iterated_pop (X145, push(X729, constantl_stack))) =
top(iterated_pop (X145, push(X729, constant2_ stack)})

# EQUATION PRCVED BY TIP-SYSTEM.

(The proof 1is performed by induction over X145 using the
constructors "zero” and "succ" of the natural numbers. The base
of the induction uses the equation top(push(X29, X30)) = X29
which has been proved previously and therefore 1is automatically
added to the lemmas of the implementation. The induction step
uses the equation top(iterated pop(X145, pop(push(X31, X32))))
= top(iterated pop(X145, X32}) (which has alsc been proved
before) and the hypothesis of the context induction.)

* THE FOLLOWING ABSTRACT FUNCTIONS WITH RESULT-~SORT stack
* HAVE TO BE CONSIDERED

(1): push : elem, stack -> stack * proved

(2): pop : stack -> stack

Selected function: pop : stack -> stack

* ADDITIONAL HYPOTHESIS OF THE CONTEXTT INDUCTION:
top{iterated_pop(X145, constantl_stack)) =
topl{iterated_pop (X145, constant2_stack))

* PROOF OBLIGATION:
top{iterated_pop (X145, pop{constantl stack))) =
top(iterated_pop (X145, pop(constantZ stack)))

# EQUATION PROVED BY TIP-SYSTEM.

(The proof uses the second axiom of iterated pop and the
hypothesis.)

* CONTEXT INDUCTION OF DEPTH 1 FINISHED
* CONTEXT INDUCTION OF DEPTH 0 FINISHED

* END OF THE IMPLEMENTATION PROOF
*%k%x* ALI, PROOF OBLIGATIONS PROVED! #*%*%*%

3.4 The Structure of the ISAR System

The ISAR system is written in the programming language PASCAL in order to be
compatible with the TIP system which vetifies all proof obligations generated by
ISAR. The main modules of ISAR are
- ascanner and a parser with mixfix-parser for the syntactical analysis of
specifications and implementation steps,
- a normalizer for flattening structured specifications and implementation steps,
- a context generator to produce automatically contexts which represent
generalizations of the actual induction assertion,
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- a TIP-interface for the exchange of informations between the ISAR and the TIP
system and

- the proof-modules of the TIP-system for the verification of the proof
obligations.

For lack of space we cannot give here a more elaborated description of the internal
structure and technical details of the ISAR system. Interested readers may consult
[Bauer 93].

4 Concluding Remarks

The development of the ISAR system is the consequent third step after having
introduced the context induction principle for proving behavioural implementations in
[Hennicker 90] and after the investigation of a proof procedure for context induction
proofs in [Hennicker 92]. The proof techniques of the ISAR system and the
underlying implementation concept are based on behavioural semantics which is a
major difference for instance to the ISDV system (cf. [Beierle, VoB 85]) where
implementations and abstract specifications are related by representation
homomorphisms. Recently, in [Bidoit, Hennicker 92] a method was developed for
proving observational theorems over a behavioural specification with the Larch Prover
(cf. [Garland, Guttag 88]) where (under particular assumptions) an explicit use of
context induction could be avoided by using the partioned by deduction rule of LP. It
is an interesting objective of future research how an environment for proving
behavioural implementations could be built on top of LP.

The actual version of the ISAR system is restricted to equational specifications but it
is intended to provide an extension to conditional equational specifications (with
observable premises of the axioms) and to implementations of parameterized
specifications. In particular, for dealing with parameterized implementations the
solution is very simple: One just has to guarantee that proofs of equations by the TIP
system do not use induction on parameter sorts.

An important direction of future development concerns the use of ISAR for the
representation of reusable software components and for retrieving reusable
components from a component library. In fact an implementation step as it is
processed by ISAR represents a two level reusable component in the sense of [Wirsing
88] where the specification to be implemented represents the abstract description of
the component’s behaviour and the implementation represents the realisation of the
component. (Actual research deals with an extension of the implementation notion
such that object-oriented classes with imperative method definitions can be used as
implementations.) Concerning the retrieval of components the ISAR system provides
already a tool which allows to check whether the reuse of components which are
retrieved from a component library by syntactic signature matching (cf. [Chen et al.
93]) is semantically correct with respect to a given goal specification. As a
consequence, we suggest to combine both techniques, syntactic signature matching
and correctness proofs by ISAR, in order to obtain a complete retrieval system for
reusable software components.
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