Skip to main content

Higher order differential structure of images

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 687))

Abstract

This paper is meant as a tutorial on the basic concepts for vision in the ’Koenderink’ school. The concept of scale-space is a necessity, if the extraction of structure from measured physical signals (i.e. images) is at stage. The Gaussian derivative kernels then are for physical signals the natural analogs of the mathematical differential operators. This paper discusses first some interesting properties of the Gaussian derivative kernels, like their orthogonality and behaviour with noisy input data. Geometrical structure to extract is expressed as differential invariants, in this paper limited to invariants under orthogonal transformations. Three representations are summarized: Cartesian, gauge and manifest invariant notation. Many explicit examples are given. A section is included about computer implementation of the calculation of higher order invariant structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, “Scale and the differential structure of images,” Image and Vision Computing, vol. 10, pp. 376–388, July/August 1992. Special Issue: Information Processing in Medical Imaging. Also: 3DCV Technical Report no. 91–30.

    Article  Google Scholar 

  2. B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. A. Viergever, “Scale-space: Its natural operators and differential invariants,” in Information Processing in Medical Imaging (A. C. F. Colchester and D. J. Hawkes, eds.), vol. 511 of Lecture Notes in Computer Science, (Berlin), pp. 239–255, Springer-Verlag, July 1991.

    Google Scholar 

  3. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, “Scale-space,” Tech. Rep. 91–25, Computer Vision Research Group (3DCV), Utrecht Biophysics Research Institute (UBI), 1991.

    Google Scholar 

  4. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, “Families of tuned scale-space kernels,” in Proceedings of the European Conference on Computer Vision (G. Sandini, ed.), (Santa Margherita Ligure, Italy), pp. 19–23, May 19–22 1992. Also: 3DCV Technical Report 91–21.

    Google Scholar 

  5. L. Schwartz, Théorie des Distributions, vol. I, II of Actualités scientifiques et industrielles; 1091,1122. Paris: Publications de l'Institut de Mathématique de l'Université de Strasbourg, 1950–1951.

    Google Scholar 

  6. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, “Images: Regular tempered distributions,” in Shape in Picture (A. Toet and Y. O. Ying, eds.), NATO ASI Series F, Springer Verlag, New York, 1993. NATO ASI workshop, September 1992, Driebergen NL; Also: 3DCV Technical Report 92-18.

    Google Scholar 

  7. M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. I–V. Berkeley: Publish or Perish Inc., 1970.

    Google Scholar 

  8. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry—Methods and Applications. Graduate Texts in Mathematics, New York: Springer-Verlag, 2 ed., 1992. Part I. The Geometry of Surfaces, Transformation Groups, and Fields.

    Google Scholar 

  9. J. Llacer, B. M. ter Haar Romeny, L. M. J. Florack, and M. A. Viergever, “The use of geometric prior information in bayesian tomographic image reconstruction: a preliminary report,” in Proc. SPIE Conf. on Mathematical Methods in Medical Imaging, vol. 1768, (San Diego), pp. 82–96, 23–24 July 1992.

    Google Scholar 

  10. J. Llacer, B. M. ter Haar Romeny, L. M. J. Florack, and M. A. Viergever, “The representation of medical images by visual response functions,” IEEE Engineering in Medicine and Biology, 1992. Accepted for publication.

    Google Scholar 

  11. J. J. Koenderink and A. J. van Doorn, “The structure of two-dimensional scalar fields with applications to vision,” Biol. Cybern., vol. 33, pp. 151–158, 1979.

    Article  PubMed  Google Scholar 

  12. J. J. Koenderink, “The structure of images,” Biol. Cybern., vol. 50, pp. 363–370, 1984.

    Article  PubMed  Google Scholar 

  13. J. J. Koenderink and A. J. van Doorn, “Representation of local geometry in the visual system,” Biol. Cybern., vol. 55, pp. 367–375, 1987.

    Article  PubMed  Google Scholar 

  14. J. J. Koenderink and A. J. van Doorn, “Receptive field families,” Biol. Cybern., vol. 63, pp. 291–298, 1990.

    Article  Google Scholar 

  15. J. J. Koenderink and A. J. van Doorn, “Generic neighborhood operators,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, pp. 597–605, June 1992.

    Article  Google Scholar 

  16. B. M. ter Haar Romeny and L. M. J. Florack, “A multiscale geometric model of human vision,” in Perception of Visual Information (B. Hendee and P. N. T. Wells, eds.), pp. 75–116, Berlin: Springer-Verlag, 1993.

    Google Scholar 

  17. J. J. Koenderink and A. J. Van Doorn, “Operational significance of receptive field assemblies,” Biol. Cybern., vol. 58, pp. 163–171, 1988.

    Article  PubMed  Google Scholar 

  18. J. Blom, B. M. ter Haar Romeny, A. Bel, and J. J. Koenderink, “Spatial derivatives and the propagation of noise in gaussian scale-space,” J. of Vis. Comm. and Im. Repr., May 1991. Also: 3DCV Technical Report 91-03.

    Google Scholar 

  19. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, “General intensity transformations,” in Proc. 7th Scand. Conf. on Image Analysis (P. Johansen and S. Olsen, eds.), (Aalborg, DK), pp. 338–345, August 1991. Also: 3DCV Technical Report no. 90-20.

    Google Scholar 

  20. A. H. Salden, L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, “Multi-scale analysis and description of image structure,” Nieuw Archief voor Wiskunde, November 1992.

    Google Scholar 

  21. D. Hilbert, “Ueber die vollen Invariantensystemen,” Math. Annalen, vol. 42, pp. 313–373, 1893.

    Article  Google Scholar 

  22. A. H. Salden, B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. Viergever, “A complete and irreducible set of local orthogonally invariant features of 2-dimensional images,” in Proceedings 11th IAPR Internat. Conf. on Pattern Recognition (I. T. Young, ed.), vol. III: Image, Speech and Signal Analysis, (The Hague, the Netherlands), pp. 180–184, IEEE Computer Society Press, Los Alamitos, August 30–September 3 1992. Also: 3DCV Technical Report 91-22.

    Google Scholar 

  23. A. H. Salden, B. M. ter Haar Romeny, and M. A. Viergever, “Local and multilocal scale-space description,” in Shape in Picture (Y. O. Y. A. Toet, ed.), NATO ASI Series F, Springer Verlag, New York, September 1992. NATO ASI workshop, Driebergen NL.

    Google Scholar 

  24. H. Weber, Lehrbuch der Algebra, vol. I–III. New York: Chelsea Publishing Company, 1894.

    Google Scholar 

  25. B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. A. Viergever, “Invariant third order properties of isophotes: T-junction detection,” in Theory & Applications of Image Analysis (P. Johansen and S. Olsen, eds.), vol. 2 of Series in Machine Perception and Artificial Intelligence, pp. 30–37, Singapore: World Scientific, 1992. Selected Papers from the 7th Scandinavian Conference on Image Analysis.

    Google Scholar 

  26. ESPRIT, “Viewpoint invariant visual acquisition,” tech. rep., Collaboration betweeen Leuven KUL, Oxford Univ., Hamburg Univ., Utrecht Univ., Lund Univ. Keele Univ., INRIA Nice, 1992–1995.

    Google Scholar 

  27. R. M. van Maarseveen, “Parser: a system for parsing invariant tensors to cartesian representation,” tech. rep., 3D Computer Vision, 1992. Internal Report 3DCV no. 92-31.

    Google Scholar 

  28. P. A. Van den Elsen, E. J. D. Pol, J. B. A. Maintz, and M. A. Viergever, “Image fusion using geometrical features,” in SPIE Vol. 1808 Visualization in Biomedical Computing (R. Robb, ed.), (Bellingham, WA), SPIE Press, 1992.

    Google Scholar 

  29. J. J. Koenderink, Solid Shape. Cambridge, Mass.: MIT Press, 1990.

    Google Scholar 

  30. R. A. Robb, D. P. Hanson, R. Karwoski, A. G. Larson, E. L. Workman, and M. C. Stacy, “Analyze: A comprehensive, operator-interactive software package for multidimensional medical image display and analysis,” Computerized Medical Imaging and Graphics, vol. 13, no. 6, pp. 433–454, 1992.

    Article  Google Scholar 

  31. G. Gerig et al., “Nonlinear anisotropic filtering of mri data,” Technical Report BIWI-TR-124, Institute for Communication Technology, Image Science Division, ETH-Zentrum, Zürich, Switzerland, 1991.

    Google Scholar 

  32. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 12, pp. 429–439, 1990.

    Google Scholar 

  33. E. Nsf, “Geometry driven diffusion,” tech. rep., Collaboration between KUL Leuven, Utrecht Univ., Ceremade Paris, Las Palmas Univ., KTH Stockholm, ETH Zürich, Linkoping Univ., MIT Cambridge, Harvard Cambridge, CalTech, UCB Berkeley, 1993–1996.

    Google Scholar 

  34. J. J. Koenderink, “The brain a geometry engine,” Psychological Research, vol. 52, pp. 122–127, 1990.

    Article  PubMed  Google Scholar 

  35. J. Zhang and S. Wu, “Structure of visual perception,” Proc. Natl. Acad. Sci. USA, vol. 87, pp. 7819–7823, October 1990.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harrison H. Barrett A. F. Gmitro

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

ter Haar Romeny, B.M., Florack, L.M.J., Salden, A.H., Viergever, M.A. (1993). Higher order differential structure of images. In: Barrett, H.H., Gmitro, A.F. (eds) Information Processing in Medical Imaging. IPMI 1993. Lecture Notes in Computer Science, vol 687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013782

Download citation

  • DOI: https://doi.org/10.1007/BFb0013782

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56800-1

  • Online ISBN: 978-3-540-47742-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics