Abstract
The present paper focuses on the conversion of multidimensional image structures to an object-centered, abstract description encoding shape features and structure relationships. We describe a prototype system that extracts three-dimensional (3-D) curvilinear structures from volume image data and transforms them into a symbolic description which represents topological and geometrical features of tree-like, filamentous objects.
The initial segmentation is performed by 3-D hysteresis thresholding. A skeletal structure is derived by 3-D binary thinning, approximating the center-lines while fully preserving the 3-D topology. The local width of the line structures is characterized by a separate 3-D Euclidean distance transform. Compilation, or raster-to-vector transformation, converts the maximally thinned voxel lists into a vector description. The final graph data-structure encodes the spatial course of line sections, the estimate of the local diameter, and the topology at important key locations like branchings and end-points.
The analysis system is applied to the characterization of the cerebral vascular system segmented from magnetic resonance angiography (MRA).
Preview
Unable to display preview. Download preview PDF.
References
H-H. Ehricke and G. Laub. Combined 3D-display of cerebral vasculature and neuroanatomic structures in mri. In K.H. Höhne, H. Fuchs, and S.M. Pizer, editors, 3D Imaging in Medicine, pages 229–239, Berlin Heidelberg, June 1990. Springer-Verlag.
K.H. Höhne, M. Bomans, A. Pommert, M. Riemer, et al. Rendering tomographic volume data: Adequacy of methods for different modalities and organs. In K.H. öhne, H. Fuchs, and S.M. Pizer, editors, 3D Imaging in Medicine, pages 197–215, Berlin Heidelberg, 1990. Springer-Verlag.
D. Vandermeulen, D. Delaere, P. Suetens, H. Bosmans, and G. Marchal. Local filtering and global optimisation methods for 3d magnetic resonance angiography (mra). In Richard A. Robb, editor, Visualization in Biomedical Computing, pages 274–288. SPIE, October 1992.
Society of Magnetic Resonance in Medicine, SMRM. Proceedings of SMRM conference held at San Francisco, August 1991. abstracts 210, 757, 820, 1229.
H-H. Ehricke, L.R. Schad, G. Gademann, B. Wowra, etal. Use of MR angiography for stereotactic planning. Journal of Computer Assisted Tomography, 16(1):35–40, January 1992.
H.E. Cline et al. Vascular morphology by three-dimensional magnetic resonance imaging. Mag. Res. Im., Pergamon Press, 7:45–54, 1989.
D.N. Levin et al. The brain: integrated three-dimensional display of MR and PET images. Radiology, 17:783–789, 1989.
H. Blum. A transformation for extracting new descriptors of shape. In E. Dunn, W., editor, Models for the Perception of Speech and Visual Form, Cambridge, MA, 1967. M.I.T. Press.
J. Niggemann. Analysis and representation of neuroanatomical knowledge. Applied Artificial Intelligence, 4:309–336, 1990.
J.F. Canny. Finding edges and lines in images. Technical Report 720, MIT Artificial Intelligence Laboratory, Dept. of Electrical Engineering and Computer Science, Cambridge, MA, 1983.
J.F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.
O. Monga et al. Recursive filtering and edge closing: two primary tools for 3D edge detection. In O. Faugeras, editor, Proc. First European Conference on Computer Vision — ECCV'90, pages 56–65, Berlin-Heidelberg, May 1990. Springer-Verlag.
C. Arcelli and B. Sanniti di Baja. A width-independent fast thinning algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(4):463–474, 1985.
P.T. Speck. Übersetzung von Linien und Flächenstrukturen in kombinatorisch-relationale Datenstrukturen zur automatischen Mustererkennung in Digitalbildern. PhD thesis, ETH Zurich, 1984. Ph.D. thesis No. 7508.
P.E. Danielson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227–248, 1980.
L. Dorst. Pseudo-euclidean skeletons. In Proc. 8. ICPR, Paris, pages 286–288, 1986
D.G. Morgenthaler. Three-dimensional simple points: serial erosion, parallel thinning, and skeletonization. Technical Report TR-1005, Computer Vision Laboratory, University of Maryland, College Park, MD 20742, USA, February 1981.
T.Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing, 48:357–393, 1989.
S. Lobregt, P.W. Verbeek, and F.C.A. Groen. Three-dimensional skeletonization, principle and algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(1):75–77, January 1980.
Y.F. Tsao and K.S. Fu. A parallel thinning algorithm for 3-D pictures. Computer Graphics and Image Processing, 17:315–331, 1981.
D.G. Morgenthaler. Three-dimensional digital topology: The genus. Technical Report TR-980, Computer Vision Laboratory, University of Maryland, College Park, MD 20742, USA, November 1980.
G. Malandain, G. Bertrand, and N. Ayache. Topological classification in digital space. In A.C.F. Colchester and D.J. Hawkes, editors, Information Processing in Medical Imaging, IPMI'91, pages 300–313, Berlin-Heidelberg, 1991. Springer-Verlag.
G. Bertrand and G. Malandain. A new topological classification of points in 3d images. In G. Sandini, editor, Computer Vision — ECCV'92, pages 710–714, Berlin Heidelberg, 1992. Springer-Verlag.
G.T. Herman and C.A. Bucholtz. Shape-based interpolation using a chamfer distance. In Proceedings of IPMI'91, Wye, pages 314–325. Springer-Verlag, 1991.
K.J. Zuiderveld, A.H. Konong, and M.A. Viergever. Acceleration of ray-casting using 3-d distance transforms. In Proceedings of VBC'92, Chapel Hill, pages 336–346. SPIE Conf. Ser. Vol. 1808, 1992.
H. Yamada. Complete euclidean distance transformation by parallel operation. In Proc. 7th ICPR, pages 69–71, 1984.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gerig, G., Koller, T., Székely, G., Brechbühler, C., Kübler, O. (1993). Symbolic description of 3-D structures applied to cerebral vessel tree obtained from MR angiography volume data. In: Barrett, H.H., Gmitro, A.F. (eds) Information Processing in Medical Imaging. IPMI 1993. Lecture Notes in Computer Science, vol 687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013783
Download citation
DOI: https://doi.org/10.1007/BFb0013783
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56800-1
Online ISBN: 978-3-540-47742-6
eBook Packages: Springer Book Archive