Abstract
An approach is developed to multiscale image segmentation, based on pixel classification by means of a Kohonen network. An image is described by assigning a feature pattern to each pixel, consisting of a scaled family of differential geometrical invariant features. The invariant feature pattern representation of a training image is input to a Kohonen network, in order to obtain a description of the feature space in terms of so-called prototypical feature patterns (the weight vectors of the network). Supervised labeling of these prototypical feature patterns may be accomplished using classes derived from an a priori segmentation of the training image. We can segment any image similar to the training image by comparing the feature pattern representation of each pixel with all weight vectors, and assigning each pixel the class of the best matching weight vector. In our study we evaluated the benefit of applying features at multiple scales, as well as the effects of first and second order information on the results.
Preview
Unable to display preview. Download preview PDF.
References
J.J. Koenderink and A.J van Doorn. The structure of images. Biological Cybernetics, 50:363–370, 1984.
J.J. Koenderink and A.J van Doorn. Receptive filed families. Biological Cybernetics, 63:291–297, 1990.
L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever. Scale and the differential structure of images. Image and Vision Computing, 10(6):376–388, July/August 1992. Special Issue: Information Processing in Medical Imaging.
B.M. ter Haar Romeny, L.M.J. Florack, J.J. Koenderink, and M.A. Viergever. Scalespace: its Natural Operators and Differential Invariants, volume 511 of Lecture Notes in Computer Science, pages 239–255. Springer-Verlag, 1991.
L.C. Baxter and J.M. Coggins. Supervized pixel classification using a feature space derived from an artificial visual system. Technical report, University of North Carolina, Department of Computer Science, 1991.
T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, 1984.
H. Bertsch. Die selbstlernende topologische Merkmalskarte zur Bildsegmentierung und Klassifikation. Technical report, Deutsches Krebsforschungszentrum Heidelberg, Abteilung Medizinische und Biologische Informatik, 1988.
R. Hecht Nielsen. Neurocomputing. Addison-Wesley, 1990.
J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Compulation. Addison-Wesley, 1991.
K.L. Vincken, A.S.E. Koster, and M.A. Viergever. Probabilistic multiscale image segmentation. In Proceedings of the Second Conference on Visualization in Biomedical Computing. IEEE, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haring, S., Viergever, M.A., Kok, J.N. (1993). A multiscale approach to image segmentation using Kohonen networks. In: Barrett, H.H., Gmitro, A.F. (eds) Information Processing in Medical Imaging. IPMI 1993. Lecture Notes in Computer Science, vol 687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013790
Download citation
DOI: https://doi.org/10.1007/BFb0013790
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56800-1
Online ISBN: 978-3-540-47742-6
eBook Packages: Springer Book Archive