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Abstract 
This paper recalls the numerical solution method for Deterministic and 
Stochastic Petri Nets (DSPNs) and describes the graphical, interactive analysis 
tool DSPNexpress which has been developed at the Technische Universitat 
Berlin since 1991. The software package DSPNexpress allows the employment 
of complex DSPNs for evaluating the performance and dependability of 
discrete-event dynamic systems such as computer systems, communication 
networks, or automated manufacturing systems. A DSPN of a memory 
consistency model for a multicomputer system with virtually shared memory is 
presented to illustrate the modeling power of DSPNs. 

1 Introduction 

Petri Nets in which transition firings can be augmented with a constant delay 
constitute an important tool for modeling various kinds of discrete-event dynamical 
systems, because such systems typically include activities with constant duration. 
Examples of activities which might have a constant duration are transfer times of data 
packets of fixed size in distributed computing systems, timeouts in real-time systems, 
and repair times of components in fault-tolerant systems. In Timed Petri Nets (TPNs) 
[20] all transitions have associated either constant delays (D-timed Petri Nets) or 
exponentially distributed delays (M-timed Petri Nets). Generalized Timed Petri Nets 
(GTPNs) have been introduced in [12] as an extension to TPNs. GTPNs contain 
immediate transitions firing without a delay and timed transitions firing after a 
deterministic delay. TPNs and GTPNs employ a discrete time scale for the underlying 
stochastic process. In TPN and GTPN timed transitions fire in three phases and the 
next transition to fire is chosen according to some probability distribution. 

Deterministic and Stochastic Petri Nets (DSPNs) have been introduced in [2] as a 
continuous-time modeling tool which include both exponentially distributed and 
constant timing. In DSPNs, transition firing is atomic and the transition with the 
smallest firing delay is the next transition to fire. Under the restriction that in any 
marking at most one deterministic transition is enabled, a numerical solution method 
for calculating the steady state solution of DSPNs has been introduced. This method 
is based on the technique of the embedded Markov chain and requires the numerical 
calculation of transient quantities of continuous-time Markov chains defined by 
exponential transitions concurrently or competitively enabled with a deterministic 
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transition. Efficient computational formulas for the transient analysis of these Markov 
chains have been presented in [14]. DSPNs have been applied for modeling the 
performance of an Ethernet Bus LAN [3], and several fiber optic LAN architectures 
[5] as well as for deriving self-stability measures of a fault-tolerant clock 
synchronization system [18]. More recently, DSPNs have been employed for 
evaluating the performance of memory consistency models for multicomputer 
systems with virtually shared memory [17] and for an integrated 
performance/dependability analysis of an automated manufacturing system [15]. 

This paper recalls the numerical solution method for DSPNs and describes the 
graphical, interactive analysis tool DSPNexpress which which has recently become 
available [ 13]. The development of DSPNexpress has been motivated by the lack of a 
powerful software package for the numerical solution of DSPNs and the complexity 
requirements imposed by evaluating the performance and dependability of computer 
systems, communication networks, and automated manufacturing systems. The 
development of DSPNexpress has been motivated by the lack of a powerful software 
package for the numerical solution of DSPNs and the complexity requirements 
imposed by evaluating the performance and dependability of multicomputer systems, 
communication networks, and automated manufacturing systems. The remainder of 
this paper is organized as follows. Section 2 recalls the main steps of the numerical 
solution method for DSPNs. In Section 3 the software package DSPNexpress is 
described. NDSPN of a sequential memory consistency model for a multicomputer 
system with virtually shared memory is presented in Section 4. Finally, current 
research topics are outlined. 

2 The Numerical Solution Algorithm for Deterministic and 
Stochastic Petri Nets 

The numerical solution technique for computing steady-state marking probabilities of 
DSPN models introduced by Ajmone Marsan and Chiola [2] is based on the 
restriction that the DSPN does not contain markings in which two or more 
deterministic transitions are concurrently enabled. With this restriction they showed 
how to analyze the stochastic behavior of a DSPN using the technique of the 
embedded Markov chain. Sampling the stochastic behavior of the DSPN only at 
appropriately selected instants of time define regeneration points of a Markov 
regenerative stochastic process [9] in which the Markovian property holds. In case 
only exponential transitions are enabled the stochastic behavior of the DSPN is 
sampled at the instant of firing of an exponential transition. In case a deterministic 
transition is exclusively enabled the stochastic behavior of the DSPN is sampled at 
the instant of its firing. If a deterministic transition is competitively enabled with 
some exponential transitions, the stochastic behavior is sampled when either the 
deterministic or the exponential transition fires. If a deterministic transition is 
concurrently enabled with some exponential transitions, the stochastic behavior is 
sampled at the instant of time of firing the deterministic transition. 
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As a consequence, a change of marking in the DSPN due to firing of an 
exponential transition which is concurrently enabled with a deterministic transition is 
not represented in the embedded Markov chain by a corresponding state change. 
Thus, the embedded Markov chain typically contains fewer states than the number of 
tangible markings of the DSPN. The state space cardinalities of the DSPN and its 
embedded Markov chain are denoted by N and N', respectively. For example, the 
DSPN of the modified Er/D/1/K queue discussed below has N = rK-1 tangible 
markings, but its embedded Markov chain has only N'= r(K-1)+l states. Assuming a 
DSPN contains markings in which a deterministic transition is competitively or 
concurrently enabled with some exponential transitions, the transition probabilities of 
its embedded Markov chain have to be derived by calculating transient quantities of 
the Markov chain defined by the firing rates of exponential transitions competitively 
or concurrently enabled with a deterministic transition and the firing probabilities of 
immediate transitions which are enabled directly after a firing of one of the 
exponential transitions. This continuous-time Markov chain has been referred to as 
the subordinated Markov chain (SMC) of a deterministic transition [14]. 

In the first step of the DSPN solution process the extended reachability graph 
consisting of tangible markings and directed arcs labelled with firing rates and 
weights causing the corresponding change of marking is generated. An efficient 
algorithm for generating the extended reachability graph for Generalized Stochastic 
Petri Nets has been introduced by Balbo, Chiola, Franceschinis and Molinar Roet [6]. 

The second step of the DSPN solution algorithm is the calculation of the transition 
probability matrix P of the embedded Markov chain and the conversion matrix C. For 
markings which enable a deterministic transition Tk competitively or concurrently 
with some exponential transition the corresponding entries of these matrices are 
derived by calculating time-dependent quantities of the SMC. Transient state 
probabilities of the SMC of the deterministic transition T~ determine the 
corresponding transition probabilities of the embedded Markov chain. According to 
[2] the transition probability P(S i ---> Sj) between two states S/and S j o f  the 
embedded Markov chain is given by: 

T (1) P(S i ---> Sj) = u i -e Q~k -A k .uj 

In formula (1) Q denotes the generator matrix of the Markov chain subordinated 
to the deterministic transition Tk with firing delay vi. The term ui denotes the i-th row 
unity vector of dimension Ni (ui e R 1 ~vk) where Nl is equal to the dimension of the 
generator matrix Q. The term ufdenotes the j-th column unity vector of dimension 
N" (u~" e R N'• The matrix Ak denotes a transition probability matrix representing 
the feasible marking changes caused by a path of immediate transition firings which 
are enabled immediately after a firing of this deterministic transition. Nonzero entries 
of Ak are either "1" or given by the weights associated with conflicting immediate 
transitions. The matrix A k is a rectangular matrix of dimension N i x  N:  

In case the deterministic transition Tk is concurrently enabled with some 
exponential transitions, the sojourn times in tangible markings of the continuous-time 
stochastic behavior of the DSPN caused by firings of exponential transitions during 
the enabling interval of the deterministic transition are not taken into account in the 
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discrete-time embedded Markov chain. Thus, conversion factors are employed to 
derive the steady-state probability vector of the DSPN of dimension N from the 
steady-state probability vector of the embedded Markov chain of dimension N :  
These conversion factors are calculated as the average sojourn times in a state Sj 
during the enabling interval of the deterministic transition Tk assuming this transition 
has become enabled in state Si. These conversion factors are given by: 

r 
C(i,j) e Qt T 

= j u  i . �9 uj dt (2) 

o 

As shown in [14] the time-dependent quantities of formula (1) and (2) can be 
efficiently computed using the randomization technique [11]. 

Subsequently, in the third step of the DSPN solution process the steady-state 
solution, 7r(.) of the embedded Markov chain is calculated by solving the linear 
system of its global balance equations. 

~r-P=zr 

N' 

(s) 
v=l 

In the final step of the DSPN solution algorithm the steady-state solution of the 
continuous-time DSPN, p(.), is derived from the probability vector of the discrete- 
time embedded Markov chain, Jr(.), and the conversion matrix C. Subsequently, the 
converted solution is normalized by Equation (5) in order to obtain the marking 
probability vector of the DSPN. 

N' 
Z C(v,i). n'(v) 1 _< i -< U (4) /3(i) 
v=l 

,b(i) 1 < i < N (5) p(i) = U ~ 

' ~v= l  p( i) 

TO illustrate the numerical DSPN solution algorithm an example of a for a single- 
server queueing system with constant service time and a finite capacity of K 
customers is considered. Figure 1 depicts a DSPN model of this queueing system. If 
free buffers are available, customers arrive according to an Erlang distribution with r 
phases. In case all buffers are occupied, the arrival process is blocked. Subsequently, 
this queueing system is referred to as the modified Er/D/1/K queue. The exponential 
transitions T2 and T3 are associated with a firing rate of r;t. The output arc from 
transition tl to place P2 and the input arc from place P3 to transition T3 have the 
multiplicity r-1. Tokens contained in place P5 represent customers waiting in the 
queue or currently being served. The constant service requirement is modeled by the 
deterministic transition T4 with a firing delay of v. The DSPN model has rK+l 
tangible markings which can be classified as follows. One marking enables the 
deterministic transition exclusively, r markings enable only exponential transitions, 
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Figure 1. DSPN of the modified Er/D/1/K queue 

and r(K-1) markings enable one exponent ia l  transition concurrently with a 
deterministic transition. Observing the stochastic behavior of the modified Er/D/1/K 
queue only at departure points of customers defines an embedded Markov chain. Its 
state transition diagram is shown in Figure 2. The first index of a state Si,j denotes 
the number of customers in the system. The second index denotes the number of 
phases already completed by the next arriving customer. The states So,j (l<_j _< r-l) 
have a single state transition with probability 1. In case of 1 <_i _<K-I, each state Si,j 
has nonzero transition probabilities to the s t a t e s  Si.1, j ... SK. I ,  O. Note, only for the 
states $1,o and SK-I,O of this class are all feasible state transitions included in Figure 
2. Since the continuous-time behavior of the modified Er/D/1/K queue is observed 
only at departure points, the embedded Markov chain consists of r(K-l)+l states 
rather than rK+l. 

In case the deterministic transition T4 is enabled the corresponding transition 
probabilities of the EMC and the entries of the conversion matrix are derived by a 
transient analysis of the Markov chain subordinated to this deterministic transition. 
This Markov chain is shown in Figure 3. In the first r rows only diagonal elements of 
the matrix C have nonzero values, since in the corresponding markings only 
exponential transitions are enabled. For the remaining rows of the conversion matrix 
C the coefficients are determined by the mean sojourn times in states of the 
subordinated Markov chain of transition T4 during the time interval [0, x]. 

Figure 3. Subordinated Markov chain of the deterministic transition T4 
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The s ta tes  SK_I, 1 .., SK.I,r. 1 and SK, 0 are not visited in the embedded Markov chain 
because the system is observed only at departure points of customers. In the 
continuous-time stochastic behavior of the modified Er/D/1/K queue these states may 
occur. The steady-state probabilities in the continuous-time stochastic behavior of the 
modified Er/D/1/K queue are derived by means of conversion factors. For this 
example, the conversion matrix C is a rectangular matrix of dimension ( r ( K - 1 ) + l )  x 

( r K + l ) .  Thus, the conversion matrix is given by: 

C= 

0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 

0 1 . 
r /~  

: . .  . .  . � 9  . .  

: '.. ! 0 0 rZ 
1 

0 . . . . . .  0 72- 0 0 . . . . . . . . . . . . . . .  "'" 0 

0 . . . . . . . . .  0 C O C 1 C 2 . . . . . . . . . . . .  C (K- l ) r -1  C(K-1)r 

. . . . . . . . . . . .  0 C 0 C 1 . . . . . . . . . . . .  C(K-1)r-2 C ( K - 1 ) r - I  0 
: ". ". ". : : 

�9 , . 

: ".  ". " .  : : 

. . . . . . . . . . . . . . . . . . . . .  0 C0 C1 "'" Cr-1 Cr  0 

3 The Software Package DSPNexpress 

The popularity of Pctri Nets in which transition firings are augmented with time has 
gained from the availability of appropriate software packages which completely 
automate their solution process�9 This section gives a description of the analysis tool 
DSPNexpress which has been developed by the author and a group of students at the 
Technische Universitfit Berlin since 1991. The development of DSPNexpress has 
been motivated by the lack of a powerful software package for the numerical solution 
of DSPNs. The software architecture of DSPNexpress is particularly tailored to the 
numerical evaluation of DSPNs. Furthermore, DSPNexpress contains a graphical 
interface running under the Xl l  window system�9 A detailed description of 
DSPNexpress is given in [13]. 

In the following the main features of the software package DSPNexpress are 
outlined�9 The organization of DSPNexpress exploits the property that each 
Generalized Stochastic Petri Nets (GSPN) can be considered as a DSPN without 
deterministic transitions. As a consequence, a unified solution process for both DSPN 
and GSPN models is provided by DSPNexpress. The package contains an efficient 
numerical algorithm for calculating the transition probabilities of the EMC of a 
DSPN and the corresponding conversion factors. A similar algorithm is employed for 
calculating transient solutions of a GSPN. The DSPN solution module of 
DSPNexpress considers each connected component of a Markov chain subordinated 
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to a deterministic transition of a DSPN, separately, for calculating the corresponding 
transition probabilities of the EMC and the conversion factors. This leads to a 
considerable reduction of the computational effort and the memory requirements of 
the DSPN solution algorithm. The separate transient evaluation of each connected 
component of a SMC is related to the decomposition approach on the net level 
proposed by Ajmone Marsan, Chiola, and Fumagalli [4]. In their decomposition 
approach, DSPN subnets with independent behavior have to be identified by means of 
structural analysis on the net level. To obtain the transition probabilities of the EMC 
of a DSPN this approach requires a proper combination of the transient quantities 
calculated separately for each subnet. The algorithm implemented in DSPNexpress 
employs a depth-first-search algorithm for deriving the generator matrices of 
connected components of each SMC from the reachability graph of tangible markings 
of a DSPN. The transient analysis of a SMC yields immediately the corresponding 
transition probabilities of the EMC underlying the DSPN. The interaction between 
software modules of DSPNexpress is performed mostly by interprocess 
communication by means of sockets. As a consequence, the system overhead 
required by reading from or writing to files is substantially reduced. Moreover, this 
allows a parallel execution of the transient analysis of SMCs on a cluster of 
workstations. Due to this efficient numerical DSPN solution algorithm DSPNexpress 
is able to calculate steady-state solutions of complex DSPNs with reasonable 
computational effort on a modern workstation. To the best of the author's knowledge 
DSPNexpress is the first software package with this feature. 

The package DSPNexpress is organized as several sets of software modules which 
are stored in separate directories of a UNIX file system. We originally developed the 
package DSPNexpress for Sun TM workstations under SunOS.4.1, but the package has 
recently been ported to DEC TM and HP TM workstations under ULTRIX4.2 and 
HP-UX9.0, respectively. All software modules of DSPNexpress are implemented in 
the programming language C. To exploit the power of the numerical DSPN solution 
algorithm of DSPNexpress for solving complex DSPNs the package should run on 
machines with at least 16 MByte main memory. DSPNexpress allows a multi-user 
mode by including a link to the global directory DSPNexpressl.1 in the path 
expression in each user's shell profile. Only the model descriptions and the user- 
defined settings for DSPNexpress are stored in a local directory at each user's 
account. 

The graphical interface of DSPNexprcss runs under the release 5 of the X11 
window system and is implemented using athena widgets of the X11 programming 
library. It allows a user-friendly definition, modification, and quantitative analysis of 
DSPN models. Places (place), immediate transitions (imT), exponential transitions 
(expT), deterministic transitions (det~, and arcs (arc) of a graphical description of a 
DSPN are processed by selecting the corresponding object and one of the commands 
add, move, delete, or change with the mouse. For example, in the setting depicted 
Figure 4 deterministic transitions may be inserted and the grid option is used to 
simplify the graphical editing. Marking parameters (marking), firing delays (delay), 
and tags (tag) associated with places and transitions are processed in a similar way. 
For each setting of the command line an online help is provided in the upper part of 
the graphical interface explaining the actions currently available. The message 
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displayed in Figure 4 indicates that clicking the left mouse button inserts a 
deterministic transition. In Figure 4 a DSPN named sequential of the directory VSM 
is displayed. Each place and each transition of this DSPN is labeled with a tag (e.g. 
TI, t2 .... etc). Each timed transition is also labeled with a parameter specifying the 
mean value of its firing delay (e.g. write or d_locate_owner). The exponential 
transitions T1, T4, and T16 are also labeled with inf.-serv, to specify their enabling 
policy as infinite-server [1]. To illustrate the capabilities of DSPNexpress the DSPN 
solution popup is shown in Figure 5. In case the steady-state solution of a DSPN shall 
be computed the numerical method for solving the linear system of the global balance 
equations of its EMC may be chosen by the user by clicking in one of the toggles 
automatic, iterative, or direct. Moreover, a user may specify whether the transient 
analysis of the SMCs is performed sequentially on a single workstation (sequential) 
or in parallel on a cluster of workstations (parallel) and whether verbose output of the 
solution process is displayed and stored in a logfile. Transient solutions of GSPNs are 
computed by clicking in the toggle transient and specifying an instant of time. The 
design of the graphical interface has been influenced by the interface of the version 
1.4 of the package GreatSPN [7]. Opposed to the graphical interface of GreatSPN 

d i s p l  m J ~ d  : V S F d s e q u e n t  L a l ~  

~ t t ~ :  ~ d  J d e t ~ n i n i s t l c  t r ~ I t i ~  

i 
p~  I 

],ml i 

I i  

- - - , - - t  

. T11 

. . .  o . 

, l 

[ 

_ /  

L . . . . . . . . - . - - - - - ~  ~ .  

I 

Figure 4. User Interface of DSPNexpress 
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Figure 5. DSPN solution popup 

special purpose editors are provided by DSPNexpress for defining steady-state 
reward measures and marking-dependent firing delays. The editor for specifying 
user-defined reward measures is shown in Figure 6. The definitions of eight reward 
measures (QueueReadMiss, QueueWriteMiss, etc.) of the DSPN sequential are 
displayed in the middle part. The Backus-Naur form of the specification language for 
reward measures is displayed in the lower part of this window by clicking the help 
button. The graphical interface provides popups for changing firing delays of timed 
transitions, changing the type of a transition and for changing the multiplicity or the 
direction of an arc. Similar popups are also provided for defining or modifying a 
delay or a marking parameter, changing the string of a tag, etc. 

Enter  ne~ r e ~ d  (<na~>  : < d e f i n i t i o n ) ) ,  p r e ~  "E~cape" to  end 

m 
Def'~od r t~o rd  h e . t i r e s  t 

OueueRe.adHis# * E( |P4]  ~ 

Queue~4rlteXLt: E( I P l l i l  

Queuel~Ps EE#PG)) 

PP: E ( ~ I )  * E(IP2) § E ( ~ 3 ) ~  

USe~rv: P:E IP15,.0] ~ 

E lnv :  E [ ~ l i ;  

Eread -" E[ IP~ ] ;  

~ N ~ ? N ~ I ~ ! ~  i'::{i'-# ;.#::i}:j..,ii::: :i~ ::'~i:: ,}~}!!ii!:!~;iii:: ::,i~;i,:~,ii;::ii:-~:~,ii!.;~:~.i :i! ;iii;~ii-:':;~}S!!. iii!!i!!:~ii!ii'~i~iii!i~!~,iiiii~iiii~ 

l 
( reuerd_def~ -> <eHpre~slon>-;"  

(e~press ion)  - )  <1ten) I 
<real_value> ~mn_op> <e~pre~=ion> I 
( e ~ e s s s  (nt~_op)  <expression> I 
" ( "  <exp~slon> " ) "  

<itee~ -> "P("  ~Logic_cemd~ " ] "  I 
=E[" <~ark lng)  " ] "  I 

I ( lo~ ic_cond~ -> <co~pe~i~on> I 
"NOT" < loetc .cond> I 

Figure 6. Reward measure editor 
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Figure 7. DSPN print popup 

The print popup of DSPNexpress is shown in Figure 7. This popup allows the 
printing of the DSPN currently being displayed in the main window of DSPNexpress 
and/or its stochastic description such as delay and marking parameters and definitions 
and computed results of user-defined reward measures. These description may be 
either directly printed on a laser writer or stored in files named <model>.graph and 
<model>.text, respectively, by clicking the appropriate toggles with the left mouse 
button. 

4 A DSPN of  a Sequen t i a l  M e m o r y  Cons i s t ency  Pro toco l  

Previous performance studies of cache consistency and memory consistency 
protocols of shared memory multiprocessors or multicomputer systems considcr 
besides the read and write request rates to a shared block or page also the 
probabilities that a shared block reside in a particular state as input parameters of the 
model. As measure of interest the overall processing power has been derived from thc 
steady-state solution of the analytical model or have been considered in the 
simulation experiments. Opposed to that thc modeling approach presented in this 
section takes only the read and write request rates as input parameters. Thc long-run 
probabilities that a shared page residcs in the states INVALID, SHARED, or 
EXCLUSIVE are derivcd from the steady-statc solution of the DSPN. 

Trace-drivcn simulation has been employed for evaluating the performance of 
consistency models for a multiprocessor system with shared-memory, but a trace- 
driven simulation study requires substantially more effort in computation time and 
memory space than an analytical model. Moreover, a simulation modci (both trace- 
driven and stochastic) does usually not allow the verification of qualitative properties 
of consistency models. DSPNs are a numerically solvable modeling tool which are 
both suited for verification of qualitative properties of consistency paradigms and 
quantitative performance analysis. The quantitative results derived by a DSPN can be 
calculated with a pre-determined numerical accuracy. Due to the greater level of 
detail trace-driven simulation yield more accurate quantitative results for a specific 
application program than a DSPN. 
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A DSPN model of the behavior of a single shared page in a VSM system with 
sequential consistency and a write-invalidate protocol is depicted in Figure 8. A 
MIMD architecture is considered in which the nodes are connected by a low-latency 
scalable interconnection network (e.g. a crossbar interconnection network). The 
DSPN considers a subset of K+I nodes of the multicomputer system which are 
competing for the same shared page. Each of the K tokens in place INVALID and the 
token in place EXCLUSIVE represent one of these nodes. The three main states of a 
shared page in the global address space, namely INVALID, SHARED and 
EXCLUSIVE are represented in the DSPN by places with corresponding labels. The 
token in place Server available represents the idle state of the server which maintains 
the data structures for managing the considered page. All other places and transitions 
of Figure 8 are also labeled according to their meaning. In the DSPN model requests 
causing a page status change from SHARED to EXCLUSIVE are given a higher 
priority than those from INVALID to EXCLUSIVE or from INVALID to SHARED. 
The latter ones are given the same priority. This is encoded in the DSPN model as 
follows. The immediate transition Start process find owner has associated a firing 
priority of 2 whereas the immediate transitions Start process read miss and Start 
process write miss have associated a firing priority of 1 and an equal weight. These 
assumptions can be easily modified by changing the appropriate firing priorities and 
weights of these immediate transitions. Since the delay required for a page status 
change is typically at least one order of magnitude smaller than a page transfer, this 
delay is neglected in the DSPN. In case of a read miss this approximation allows to 
represent a location of the owner and a page transfer by the single deterministic 
transition Find owner and transfer page delay. 

The following explains the representation of the activities in the DSPN caused by 
a write miss to the shared page. Activities caused by the other types of requests are 
represented in a similar way. The firing of the exponential transition Write miss 
removes a token from the place INVALID and puts it to the place Write miss queue. 
In case the server is available (a token resides in place Server available) the 
immediate transition Start process write miss fires removing a token from the places 
Server available and Write miss queue and putting a token to the place Process find 
owner. The delay required by the system for this activity is represented by the 
deterministic transition Find owner delay. A firing of this transition puts the token in 
place Decision. Since the place Write hit occurred contains no token the immediate 
transition Is write miss fires and puts the token in the place Process transfer page. If 
the place EXCLUSIVE contains a token (the node owning the page has currently 
exclusive write permission), the immediate transition Change access due to write 
miss fires and puts this token in the place SIIARED. This constitutes the first step of 
the invalidation of a former owner. The former owner is not stalled until a copy of the 
page has been transferred to the new owner, since residence times of tokens in the 
place SIIARED contributes to the processing power. After the deterministic transition 
Transfer page delay has fired, the token residing in place Process transfer page is 
moved to the place Process invalidations. In case no further write request has 
occurred at the former owner (the exponential transition Write hit has not fired), the 
immediate transition Start invalidating fires and puts the token from place StlARED 
to the place Invalidating. This activity constitutes the second step of the invalidation 
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which is equal to the invalidation of nodes with read permission. The firing of the 
deterministic transition Invalidation delay removes the token from place Invalidating 
and puLs a token to the place INVALID and Process Invalidations. 

Invalidations are modeled sequentially and represented by the subnet consisting of 
the places Invalidating and Invalidating with pending write together with the 
transitions Start invalidation, Start invalidation with pending write, Invalidation 
delay, and Invalidation delay with pending write. All nodes with SHARED access 
have to be invalidated before the new owner gets the access EXCLUSIVE. Thus, the 
immediate transitions Start invalidation and Start invalidation with pending write 
have associated the higher firing priority 2 than the immediate transition Process 
write miss completed which has priority 1. All other immediate transition have also 
associated the firing priority 1. The firing of the immediate transition Process write 
request completed removes the token from place Process invalidations and puts a 
token to each of the places EXCLUSIVE and Server available. Curves of the 
processing power achieved by a muhicomputer system in which virtually shared 
memory is implemented by the sequential memory consistency model can be directly 
obtained from the steady state solution of the DSPN of Figure 8 and were presented 
in [17]. 

This DSPN model contains 5 deterministic transitions and its state space grows 
rather fast for increasing the number of tokens. Thus, for increasing marking 
parameter K the calculation of the solution of this DSPN is severely hampered due to 
state space explosion. For example, in case of K = 20 the DSPN has 59,101 tangible 
markings and its EMC consists of 6,004,585 nonzero state transitions. As shown in 
[14], DSPNs of this complexity could not be solved in practice with the adaptive 
matrix exponentiation method implemented in GreatSPNl.4. The experimental 
results presented in [13] show that this DSPN can be solved by DSPNexpress with 
reasonable computational effort on a modem workstation. 

Recent Results 

To summarize, the current state-of-the-art is that steady-state solutions of quite 
complex DSPNs can be calculated using DSPNexpress with reasonable 
computational effort on a workstation [13], [14]. This progress in the analysis of 
DSPNs has triggered other methodological work on DSPNs. Trivedi, Choi, and 
Mainkar introduced a technique for sensitivity analysis of DSPN 1-19]. In another 
recent work, extensions to the numerical solution method of DSPNs were introduced 
in order to cope with deterministic transitions with marking-dependent firing delays 
[16]. However, the numerical solution method for DSPNs which is currently 
implemented in the package DSPNexpress is still based on the restriction that in no 
marking two or more deterministic transitions are concurrently enabled. This 
structural restriction of DSPNs severely hampers their applicability for a wide gamut 
of problems. In order to fully establish DSPNs in the research community numerical 
methods for transient analysis and steady-state analysis of DSPNs with concurrently 
enabled deterministic transitions have to be developed. Recently, Choi, Kulkarni, and 
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Trivedi showed how transient solutions of DSPNs can be computed using numerical 
inversion of a Laplace-Stieltjes transform [8]. The same authors showed that the 
stochastic process underlying a DSPN is a Markov regerative stochastic process and 
introduced an approach for dealing with non-exponentially distributed firing delays 
other than the deterministic distribution [9]. However, in all of their work the 
structural restriction that in no marking of the DSPN two or more deterministic 
transitions are concurrently enabled is still assumed. 

To relax this restriction the employment of the method of supplementary variables 
has been proposed for analyzing DSPNs [10]. In this paper it has been shown that the 
computation of steady-state solutions of DSPNs with concurrently enabled 
deterministic transitions by the proposed solution approach requires the solution of a 
partial system of differential equations. Furthermore, DSPNs in which the firing 
delay of timed transitions is either exponentially or non-exponentially distributed, but 
no concurrent firings of transitions with nonexponential delay have been considered. 
Employing the proposed solution approach for such DSPNs leads to a system of 
ordinary differential equations and integral equations. In case the non-exponential 
distributions belong to the class of polynomial distributions efficient computational 
formulas for solving this system of integro-differential system have been introduced 
by extending Jensen's method, also called randomization or uniformization 111 ]. 
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