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Abstract. We characterize the properties of timing channels that 
are reflected in source code and present formal methods for the 
identification of these channels in source code of trusted comput­
ing bases (TCBs). Our <:tudy differs significantly from previous ones 
which focus on a high-level characterization of timing channels 
without leading to pra.;tical methods for their identification [ 11, 
16]. We also discuss how to integrate the formal methods presented 
into the automated system that has been previously developed for 
storage-channel identification [9] to build an automated tool for 
timing-channel identification in TCB source code which, other­
wise, is still carried out in an ad-hoc way due to the lack of general 
and practical methods. The presented methods, however, cannot 
be directly applied for detecting hardware channels that result from 
hardware ~ystem configurations. 

1 Introduction 

Covert channels present a serious threat to secure computer systems and net­
works. These channels provide an illicit means of leaking sensitive information 
from cooperative users who hrtve legal access to the information to unauthor­
ized users. Because the leakage of information is usually carried out through 
variables and system states that are not part of the object representation in the 
security model, information flows through these variables are not protected un­
der any multilevel mandatory f:ecurity policy. For example, the variable that 
stores the total number of available disk blocks can be used to represent sensi­
tive information: the sending process can encode a signal by exhausting the disk 
space and the receiving process can detect the signal by requesting an allocation 
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of some disk space. Information transfer is realized when the receiving process 
is returned an error message for its request or observes a different response time 
from its execution due to the unavailability of the disk space. 

There are two types of cover! channels: storage channels use shared global vari­
ables/data structures as the media for information transmission, whereas timing 
channels take advantage of different response times observed by the receiving 
process under the manipulation of the sending process [ 11, 13]. Both types of 
channels present an equal threat to secure systems and are required in [ 15] to 
be formally analyzed for a system to be evaluated at the B3 level and above. 
However, past work in this area has mostly centered on identifying storage 
channels, which has led to the development of several formal methods and 
automated tools [3, 5, 7, 9, 11, 12, 14, 16), and very little has been done in 
timing-channel analysis. The only relevant technique that can be immediately 
applied to timing-channel analysis is the interference approach [ 4, 7). But its 
drawbacks are equally obviom [7]. Another method, the Shared Resource Ma­
trix (SRM) Methodology [ 11], is only useful for deriving transitive closures of 
timing channels between processes but offers little help in identifying the primi­
tive channels in the first place. To this date, timing-channel identification is 
still mostly conducted in an ad-hoc way due to the lack of general and practical 
methods. 

Hu introduced the notion of ''fuzzy time" as the basis for the development of a 
collection of mechanisms to block the use of timing channels [ 10] . While fuzzy 
time can reduce the effective bandwidth of timing channels by randomizing the 
response time of system events to users, it also destroys other necessary system 
synchronization mechanisms for legitimate user communication and for 
real-time control. ThereforE', the use of fuzzy time in dealing with timing chan­
nels is limited to military and commercial applications where the use of timing 
channels is the only primary concern. To this date, identification and analysis 
still remains the only practical way of meeting the relevant requirements in [ 15] 
concerning the use of covert channels. 

In this paper, we study the properties of timing channels and propose formal 
methods for systematic identification of these channels in TCB source code. We 
also discuss how to integrate these formal methods into the automated system 
that has been previously developed for storage-channel identification [9]. 
These formal methods cannot be directly used for detecting hardware timing 
channels, however. Nevertheless, it is still necessary and important to devise 
effective ways of identifying covert channels in TCB source code (i.e., software 
channels) although hardware channels usually have a higher bandwidth. This is 
because hardware channels are generally of a dynamic nature, i.e., they may 
not exist in every system that runs the same TCB but will also depend on spe­
cific hardware system configuradons, whereas software channels are always of a 
static nature, i.e., they exist in every system that runs the same TCB. In addi­
tion, past experience indicates that most software channels have a substantially 
higher bandwidth than that specified in [ 15] for security evaluation and certifi-
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cation [9, 16] and the difference would only become greater with the advent of 
faster processors and architectural improvement. 

This paper is organized as follows. In the next two sections, we characterize 
timing channels and present formal methods for identifying these channels 
based on the characterization. In Section 4, we describe the automated system 
that has been previously developed for storage-channel identification [ 9 J and 
discuss the integration of the formal methods into the system to build an auto­
mated tool for timing-channel identification. In Section 5, we discuss hardware 
timing channels that canno1 be determined through source-code analysis be­
cause of their dependence 01~ hardware configurations and thus conclude that, 
unlike storage channels, source-code analysis alone may not reveal all the po­
tential timing channels. Finally, we conclude this paper in Section 6. 

2 Characterization of Timing Channels 

The general definition of covert channels does not distinguish between the two 
types: storage and timing, but is presented in terms of system behaviors with 
respect to the multilevel mandatory policy in the security model and its inter­
pretation in real implementations. That is, given a security model M and its 
interpretation I (M) in a system, a potential communication between two sub­
jects (processes) in I (M) is covert if and only if such communication between 
the two corresponding subjects (processes) in M is illegal [16]. This definition 
also implies that covert channels that exist in source code are only potential 
channels and only a subset of these potential channels are exploitable as real 
channels. Thus, real-time scenarios must exist for a potential channel to be a 
real channel [9, 11, 16]. The distinction between a storage channel and a tim­
ing channel is made at this time when real-time scenarios to use it is con­
structed. If a scenario involves the altering and viewing of a shared global vari­
able by the two communicating processes, the channel is a storage channel. If a 
scenario involves having the sending process modulate its use of some system 
resources in such a way that the response time of the receiving process can be 
affected, the channel is a tinJing channel [ 11, 16]. Therefore, it is possible that 
a covert channel can he both a storage channel and a timing channel. 

While the scenario for the use of a storage channel indicates a property that can 
be directly used for the identification, that for the use of a timing channel pro­
vides little insight of how to characterize the static nature of timing channels 
and of how to reach a general solution for the identification. This is mainly 
because the words "altering" and "viewing" in characterizing storage channels 
can immediately find their semantics in source code but the word "modulate" 
in characterizing timing channels does not have any simple semantics to directly 
map into. Timing channels should be characterized in such a meaningful way 
that a formal method for the identification can be easily obtained. Therefore, 
the key to a satisfactory solution to this problem relies upon the proper interpre­
tation of the word "modulate;" this along with the characterization of timing 
channels are offered below. 
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Sending process 1. Modulate the use: position disk head at Tl or T2; 
2. Send a one: position disk head at T 1; 
3. Send a zero: position disk head at T2. 

Receiving process 1. Receive data: position disk head at T3; 
2. Receive a one: need a longer response time d1; 
3. Receive a zero: need a shorter response time d2. 

Fig. 2. 1. A direct timing channel using the hard disk 

2.1 Timing Channel Types 

Timing channels can be characterized in various ways. In this paper, we char­
acterize timing channels based on the number of processes that have to be in­
volved in the communication through the channels. In general, timing channels 
can be classified into two types: direct and indirect. In a direct timing channel, 
the sending and the receiving processes are the only two processes that are 
needed to make use of the channel: the sending process modulates its use of a 
system resource so that the response time of the receiving process can be af­
fected without the involvement of any other user processes in the system. An 
example of a direct timing channel is depicted in Fig. 2.1: the sending and the 
receiving processes share the use of a hard disk and the sending process modu­
lates the use of the hard disk by positioning the disk head in different cylinders 
so that the response time of the receiving process is affected. 

In contrast to a direct timing channel, the use of an indirect timing channel has 
to involve other processes in the system for the receiving process to observe 
different response times. An example of an indirect timing channel is depicted 
in Fig. 2. 2: the sending process is able to affecting the execution of processes 
that are to be scheduled before the receiving process. Depending upon the exe­
cution of these processes, the response time of the receiving process can be 
different. The sending process can achieve this goal by exhausting the system 
resources that the processes in the scheduling queue (i.e., P1, P2, etc.) have to 
acquire before they start so that their execution has to be suspended due to the 
lack of necessary resources. This channel exists in TCB systems that use a sim­
ple FIFO scheduling scheme and becomes useless if the scheduler randomly 
selects the next process to occupy the CPU. 

2.2 Minimum Requirements for Timing Channels 
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Scheduling Queue 

Sender '--------'~---~--
Sending process 1. Modulate the use: change response times of P1, P2, ... , 

2. Send a one: make P1 or P2 or ... execute longer; 
3. Send a zero: make P1 or P2 or ... execute shorter. 

Receiving process 1. Receive data: execute on CPU; 
2. Receive a one: a longer delay before execution; 
3. Receive a zero: a shorter delay before execution. 

Fig. 2. 2. An indirect timing channel caused by process execution 

Kemmerer gives a set of "minimum" conditions for the existence of a timing 
channel [ 11], which can be summarized as follows: 

(a) The sending and the receiving processes must have access to the same re­
source. 

(b) The sending and the receiving processes must have access to a time refer­
ence such as a real-time clock. 

(c) The sending process mu~t be capable of modulating the receiving process' 
response time for detecting a change in the shared resource. 

(d) There must be some synchronization mechanism for initiating the proc-
esses and for sequencing the events. 

Same as in the case of a storage channel, condition (d) requires that a real-time 
scenario exist for a potential timing channel and conditions (a), (b) and (c) 
describe the inherent properties of the channel. Condition (c) is not necessary 
for a timing channel, howevo.r. A counter-example is the indirect timing chan­
nel in Fig. 2. 2. In general, in an indirect timing channel, it is not nec~ssary for 
the receiving process to be able to detect a change made to a shared resource by 
the sending process. It would be sufficient that the response time of the receiv­
ing process be affected in response to the change to the shared resource. There­
fore, condition (c) cannot be a minimum condition for all types of timing 
channels, in particular not for indirect timing channels. 

We now formulate a set of requirements as the minimum conditions for the 
existence of a timing channel. Here we like to emphasize two points. First, the 
sending process must be able to alter the system state in such a way that the 
response time of the receiving process can be affected. The part of the system 
state that is represented in source code consists of all the resources that can be 
shared by processes. Thus, it includes all global variables (those that do not 
belong to any process and retain their values from one process to another) and 
all user interface variables (those whose values can be set by the user when 
invoking a process). It is not required, however, that the receiving process share 
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access to the same resource as the sending process. That is, condition (a) is too 
excessive. 

Second, the receiving process must be able to access a time reference. It is not 
necessary, however, that the sending process also have access to a time refer­
ence. This is because only the receiving process needs to have the knowledge of 
the response time to decode information. The way in which the sending process 
modulates the use of a shared resource does not depend on any factors related 
to time but only on what signal (i.e., one or zero) it intends to send to the 
receiving process. That is, condition (b) is overstated as a minimum require­
ment. The time reference can be a real-time clock in the system that is ac­
cessed by the receiving process or a real-time clock out of the system that the 
invoking user of the receiving process can read upon return from the execution. 

We list, the following four minimum conditions for the existence of a timing 
channel: 

(a') The. sending process must be able to alter the system state. 
(b') The receiving process must have access to a time reference. 
( c') The alteration of the system state by the sending process can affect the 

response time of the execution of the receiving process. 
( d') There must be a synchronization mechanism for initiating the sending and 

the receiving processes and for ordering system events. 

Since the above conditions are minimum, the absence of any would make it 

impossible for the sending and the receiving processes to transmit information. 
If condition (a') is not true, the sending process would have no way of affecting 
the execution of the receiving process. If condition (b') is not true, the receiv­
ing process would have no way of distinguishing between different response 
times or determining the order of the arrival of multiple system events [ 17] to 
decode the signals from the sending process. If condition (c') is not true, the 
information encoded by the sending process cannot be decoded by the receiving 
process. Finally, condition (d') determines whether a potential timing channel 
is a real channel. If there is no way of using a potential channel in real time, the 
channel cannot be a real channel, the same requirement as that for a real stor­
age channel [9, 16]. Note that, when a static timing-channel identification is 
conducted in source code based on the above criteria, only conditions (a') and 
(c') are used to derive the solutions because condition (b') trivially holds in all 
systems nowadays and condition ( d') can only be applied manually to deter­
mine the set of real channels out of the potential channels discovered statically. 
Note also that condition ( d') may require the sending process also to access a 
time reference for synchronization purpose, which depends on specific syn­
chronization mechanisms but is not an inherent property of timing channels, 
and thus is not considered as a minimum condition in this paper. 

The two example timing channels in Fig. 2.1 and Fig. 2.2 satisfy all the above 
conditions. In particular, the sending process alters the system state by position­
ing the disk head at different cylinders in Fig. 2.1 and by affecting the execution 
of the processes in the scheduling queue in Fig. 2.2. The alterations to the 
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system state in both cases cause the receiving process to execute with different 
response times. 

3 Identification of Potential Timing Channels 
Timing-channel identification in source code can only reveal the set of poten­
tial channels [ 9, 11, 16] 1 • The similarity of the characteristics of a timing chan­
nel to those of a storage channel indicates that methods and theories that have 
been developed for storage-channel analysis are applicable to timing-channel 
analysis as well. Therefore, the identification of timing channels should be con­
ducted in TCB source code where all the potential software channels in final 
system implementations reside [9, 16]. We can model TCB source code as a 
tuple <V, E> where V is a set of variables and E is an ordered list of rules 
describing information flows among the variables in V. Shared system resources 
in source code are also expressed in the form of global variables/data structures 
that can be referenced in more than one procedure. Consequently, the part of 
the system state that is defined in terms of system resources and user interface 
variables can be uniformly defined in terms of variables only. 

Definition 3 .1. (System State) The system state in source code consists of ( 1) 
all the global variables that are shared by more than one process and (2) all the 
user interface variables whose values can be set by the user when invoking a 
process. Variables of the above types are called state variables. 0 

3.1 Direct Timing Channels 

Definition 3.2. (Direct Timing Channels) A direct timing channel is a timing 
channel that satisfies the following two conditions: 

( 1) The channel consists of two processes Ps and Pr where Ps is the sending 
process and Pr the receiving process. 

(2) The execution of Ps can affect the response time of the execution of Pr .0 

Let us now identify all the possible behaviors of two arbitrary processes that can 
be exploited in a direct timing channel for information transmission. Let us 
assume that, for any two sequences of statements S1 and S2, the amount of 
time for executing S1 is always different from that for executing S2 unless S1 

and S2 are semantically the same. Therefore, the execution of the different 
branches of an alternation statement always takes a different amount of time if 
the two statement sequences in it are not semantically the same. That is, the 
execution of the statement: 

if (C) then S1 else S2 

takes a different amount of time when C~O from that when C=O. Similarly, the 
amount of time for executing an iteration statement: 

1 
From now on in this paper, all discussions on timing-channel identification and analysis in 
source code refer to the identification of potential timing channels. 
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while (C) do S 

will depend on the value of C. Consequently, all variables in the condition ex­
pression C of an alternation or iteration statement, whether global or local, can 
affect the execution time of the statement. 

The determination of semantic equivalence of S1 and Sz is not straightforward, 
however. Strictly speaking, S1 and S2 are semantically equivalent if and only if 
they always take the same amount of time to execute. Thus, S1:{x=l;y=O;} and 
S2 :{y=10;x=O;} are usually considered semantically equivalent. However, the 
above notion cannot be simply extended to statements of the same type, e.g., 
assignment statements are semantically equivalent. For example, S1 :{x=y;} may 
need a different amount of time to execute from S2 :{x=O;} depending on the 
amount of time to fetch y. In general, deciding the semantic equivalence of two 
arbitrary statement sequences is equivalent to the halting problem and is thus 
unsolvable in any static analysis. Consequently, we take the common practice 
of conservatism in security and assume that S1 and S2 in an alternation state­
ment is always semantically different. The problem with this conservative as­
sumption is the possibility of generating false flows, that is, those that do not 
exisr when S1 and S2 are indeed semantically the same. This problem is un­
avoidable but these false flows will be singled out at the time of constructing 
real-time scenarios for the corresponding potential channels because there are 
none for them. 

There are two ways in which the response time of the receiving process can be 
affected by the sending proc~ss. First, the sending process can set (or trans­
form) the system state in such a way that the execution of the receiving process 
is affected directly by the system state. Second, the sending process can ma­
nipulate its own execution to control the time at which the receiving process 
starts to execute. In other words, the sending process controls how the receiving 
process executes in the first way and when the receiving process executes in the 
second way. We call the former a tightly coupled timing channel and the latter a 
loosely coupled timing channel. 

3.1.1 Tightly Coupled Timing Channels 

For a tightly coupled timing channel: 

( l) the sending process is able to alter a global variable during its execution, 
(2) the receiving process has the value of the same global variable appear in 

the condition expressior: of ail alternation or iteration statement, 
(3) the sending process sets the global variable to a value corresponding to the 

value of the signal (i.e., one or zero) it intends to send to the receiving 
process, and , 

( 4) the receiving process detects the signal by observing the response time of 
its execution. 

A tightly coupled timing channel is illustrated with the two example procedures 
in Fig. 3.1. To transmit one bit of information using this channel, the sending 
process sets the value of the signal it intends to send to the receiving process. 



Sending process 

t_ sender(signal) 
int signal; 
{ 

} 

extern int gv; 
gv = signal; 
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Global variable 

extern int gv; 

Receiving process 

t _receiver () 
{ 

} 

extern int gv; 
int lv =; gv; 
if (lv) ' 

delay(2); 
else delay ( 1); 

Fig. 3.1. A tightly coupled timing channel 

The receiving process observes the response time of its execution and detects a 
"one" when the response time corresponds to a two-unit-time delay and a 
"zero" when the response time corresponds to a one-unit-time delay. To trans­
mit a string of "zeros" and "ones" from the sending process to the receiving 
process, the two procedures have to be executed repeatedly with one bit per 
invocation. For example, if the sending process wants to send "11 01011101" to 
the receiving process, it invokes procedure t_sender ten times with the value of 
the signal being properly set on each invocation. The receiving process also 
invokes procedure t_receiver ten times to detect the response times of 
"2212122212" from its executions. Fig. 3.2 graphically shows the process of 
transmitting this string of bits from the sending process to the receiving process. 
Here we assume that the execution of the sending process always takes a 
o~e-unit-time delay and that process switching time is negligible. 

The identification of a potential tightly coupled direct timing channel in any 
formal method can be described by the following algorithm: 

Algorithm 3 .1. (Identification of a Tightly Coupled Timing Channel) 
( 1) Select a global variable V; 
(2) Determine if V can be altered in the program of a process (sending 

process); 
(3) Determine if the value of V is used in the condition expression of an 

alternation or iteration statement in the program of another process 
(receiving process); 

Sender 1 1 0 1 0 1 1 1 0 1 

Receiver 1 D D U D D D D D D D 
0 3 6 8 11 13 16 19 22 24 

Time 
Delay .... 
27 

Fig. 3. 2. Information transfer using a tightly couple timing channel 
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End. 

It is easy to see that the example in Fig. 2.1 is a tightly coupled timing channel. 
It is also easy to see that a resource-exhaustion channel which is viewed as a 
classical storage channel [9, 16) is also a tightly coupled timing channel since 
different response times can occur during the execution of the receiving process 
depending on whether the shared resource is still available. Note that one way 
of handling a resource-exhaustion storage channel is to prevent the error mes­
sage from being returned to the receiving process after the resource has been 
exhausted, which would eliminate the corresponding storage channel. How­
ever, the fact that the same channel is also a (tightly coupled) timing channel 
makes it possible to still leak sensitive information through exhausting the same 
resource although it is no longer usable as a storage channel. 

3.1. 2 Loosely Coupled Timing Channels 

For a loosely coupled timing channel: 

( 1) the sending process is able to control the response time of its own execu­
tion, which requires that the value of a user interface variable appear in 
the condition expression of an alternation or iteration statement, 

(2) the sending process can set the user interface variable in order to manipu­
late the response time of its execution, and 

(3) the receiving process detects the signal from the sending process by observ-
ing the time it starts execution or the time it stops execution and responds. 

A loosely coupled timing channel is illustrated with the two example procedures 
in Fig. 3. 3. To transmit one bit of information using this channel, the sending 
process sets the value of the interface variable to control the amount of time it 
will spend on execution. The receiving process observes the time when it starts 
to execute and detects a "one" if it starts late and a "zero" if it starts early. 
Therefore, to send a string of "zeros" and "ones" from the sending process to 
the receiving process, the two procedures have to be repeatedly executed with 
one bit per invocation. For example, if the sending process wants to send 
"1101011101" to the receivittg process, it invokes procedure l_sender ten times 
with the value of the signal being properly set on each invocation. The receiving 

Sending process 

!_sender( signal) 
in t signal; 
{ 

} 

int lv = signal; 
if (lv) 

delay(2); 
else delay(l); 

Receiving process 

1 receiver() c 
delay(l); 

} 

Fig. 3.3. A loosely coupled timing channel 
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Sender 1 1 0 1 0 1 1 1 0 1 

Receiver 1 

0 2 5 7 10 12 15 18 21 23 26 

Fig. 3. 4. Information tranfer using a loosely coupled timing channel 

process also invokes procedure !_receiver ten times to detect its relative starting 
times of "2212122212". Fig. 3.4 graphically shows the process of transmitting 
this string of bits from the sending process to the receiving process. Here we 
assume that the execution of the receiving process always takes a one-unit-time 
delay and that process switching time is negligible. 

It is clear that, in a loosely coupled direct timing channel, the sending process 
does not need to share any data with the receiving process. Moreover, the send­
ing process does not have to be paired with any specific receiving process. Any 
process can be the receiving process to detect signals from the sending process. 
Therefore, it is sufficient to identify only the sending process in this type of 
channels that can potentially send or broadcast information to any other proc­
esses that wish to receive the information. The algorithm for detecting a timing 
channel of this type can be described as follows: 

Algorithm 3 .2. (Identification of a Loosely Coupled Timing Channel) 
(1) Select a user interface variable V; 
(2) Determine if the value of V is used in the condition expression of an 

alternation or iteration statement in the program of a process (sending 
process); 

(3) Do nothing to any other process (receiving process); 
End. 

3. 2 Indirect Timing Channels 

Definition 3.3. (Indirect Timing Channels) An indirect timing channel is a tim­
ing channel that satisfies the following two conditions: 

( 1) The channel consists of n+2 processes Ps , P1, Pz, ... , Pn, Pr , n> 1, in 
which (a) Ps and Pr are the sending and the receiving processes, respec­
tively; (b) P1, P2, ... , Pn are other user processes in the system; and (c) 
the execution of the processes observes the same order as that in the above 
representation. 

(2) The execution of the sending process Ps can affect the response time of 
one or more of the other n processes P1 , P2, ... , Pn. D 

Note that the environment for the use of an indirect timing channel is different 
from that for the use of a direct timing channel. It is generally believed that the 
introduction of other processes into a system can make a timing channel virtu­
ally useless due to the incurred noise level. We can see that this way of resolving 
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conventional timing channels, however, has the potential of introducing indi­

rect timing channels. This is because, from Definition 3.3 (2), (a) Ps and a Pi, 

l<i<n. i.e., the process whose response time can be directly affected by Ps, 

have a tightly coupled direct timing channel in which Ps and Pi are the sending 

and the receiving processes and (b) Pr can be thought of as one of the processes 
that is added to the system on purpose for generating noise to the direct timing 

channel between Ps and Pi . We thus have a simple rule for detecting an indi­
rect timing channel: 

Rule 3 .1. (Existence of Indirect Timing Channels) For each tightly coupled 
direct timing channel, there always exists an indirect timing channel between 
the sending process of the direct timing channel and any process except the 
receiving process of the direct timing channel. 0 

The above rule indicates that the identification of indirect timing channels does 
not require additional effort beyond that of direct timing channels. Indirect tim­
ing channels can be discovered as a by-product of direct timing-channel identi­
fication. 

3. 3 Application in TCB Source Code 

The analysis of TCB source C<)de (along with hardware examination) is an inte­
gral part of covert-channel analysis. Since user processes have to invoke TCB 
primitive~ to gain access to system resources, an analysis of the entire TCB 
source code is mitigated to a static analysis of individual primitives. The deter­
mination of potential covert channels between processes, therefore, becomes a 
job of identifying potential covert channels between primitives. Consequently, 
one must consider two primitives and one shared global variable for tightly cou­
pled direct timing channels and one primitive and one user interface variable 
for loosely coupled direct timing channels in the analysis. 

The procedure of identifying a potential tightly coupled direct timing channel 
between primitives can be described as follows: 

Procedure 3 .1. (A Tightly Coupled Timing Channel) 

End. 

(1) Select a global variable that is shared by primitives; 
(2) Select a pair of primitives for analysis; 
(3) Invoke Algorithm 3.1 with the shared global variable and with the 

two primitives as the sending and the receiving processes, respec­
tively; 

The output of the identification can be represented in the form of a set of matri­
ces with each one for the potential channels through one global variable in 
which primitives are labeled under the variable as being able to send or to re­
ceive information through th·~ channel. An example matrix for global variable 
file->f_count in Secure XEND(2 (which represents the availability of an entry in 



** * * * file->f count 

Sender creat 
creatsem 
fork 
open 
opensem 

Receiver creal 
creatsem 
dup 
exec 
fork 
open 
opensem 
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***** ----- tightly coupled -----

!* scenarios of use *I 

I* scenarios of use *I 

Fig. 3.5. A tightly coupled direct timing channel in Secure XENIX 

the system-wide file table) is shown in Fig. 3.5. 3 To determine the set of real 
channels, real-time scenarios of use must be constructed. For example, an ex­
amination of the use of the file table by primitive fork reveals that the way in 
which fork alters the variable file->f_count is not consistent with the scenario 
for sending a signal. Thus, primitive fork is only a potential sender (determined 
statically) but cannot be a real sender for this channel (determined in real 
time). 

A similar procedure can be formulated for the identification of a potential 
loosely coupled direct timing, channel between primitives: 

Procedure 3.2. (A Loosely Coupled Timing Channel) 
(1) Select a primitive for analysis; 

End. 

(2) Select a user interface variable whose initial value can be set by the 
user upon the invocation of the selected primitive; 

(3) Invoke Algorithm 3.2 with the user interface variable and with this 
primitive as the sending process; 

Each output matrix, however, only contains the list of potential senders because 
all primitives are potential receivers and need not be explicitly shown. 

4 Automated Tool for Timing-Channel Identification 

We have developed an automated system for the identification of potential cov­
ert storage channels in TCB source code and have successfully applied the sys-

2 
XENIX is a registered trademark of Microsoft, Inc. 
Secure XENIX was developed by IBM Federal Systems Company. It is now marketed as 
Trusted XENJX by Trusted Infor:nation Systems, Jnc. 

3
The matrix may not contain all primitives that can send and/or receive information through 
the timing channel. 
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tem to Secure XENIX [ 6, 9]. Our past experience shows that this system is able 
to identify all potential storage channels in TCB source code. We discuss in this 
section how to integrate the timing-channel identification algorithms presented 
in this paper into this system to make it able to identify both types of potential 
channels in TCB source code. The integrated system cannot detect timing 
channels resulting from hardware configurations, however, which we discuss in 
the next section. 

4.1 The Automated Storage-:-Channel Identification System 

The automated system takes the C language of a TCB implementation and gen­
erates a list of illegal information flows that can lead to covert storage channels 
in the TCI3. Each such illegal flow is represented by a global variable, the 
identities of the two primitives that can alter and view the global variable, and 
the altering and the viewing flow paths and flow conditions that show how and 
under what condition the global variable is altered and viewed. If a real-time 
scenario exists for this flow to take place, it indicates a real covert channel in 
the TCB and must be handled properly. 

This system consists of three components: the Flow Generator (FG), the Flow 
Integrator (FI) and the Flow Analyzer (FA), whose structure and the relation­
ships among the components are depicted in Fig. 4.1. The function of the FG is 
to take C functions of TCB scurce code and translate each individual statement 
into a set of flow relations represented in a universal format. These flow rela­
tions are handed over to the FJ for flow integration to derive global flows at the 
TCB user interface. These global flows are then analyzed in the FA to deter­
mine their legality with respect to the multilevel mandatory security policy im­
plemented in the TCB. The final output of the entire system is the set of illegal 
flows that lead to potential covert storage channels. Finally, real-time scenarios 
are constructed for these potE:ntial channels to determine the set of real covert 
storage channels. The last step has to be carried out manually because the de­
termination of real flows fro1"'1 a static analysis is equivalent to the halting prob­
lem [9] and is thus unsolvable. 

This system has the following two distinctive features. First, the separation of 
flow generation from integration makes the FI and the FA general-purpose 
tools independent of any programming language. To use the tools for covert 
channel analysis in TCBs of E language other than C, one only needs to build a 
separate FG module that par1;es the language and supplies the set of flow rela­
tions. Second, the separation of flow integration from analysis makes the FI a 
general-purpose tool not solely for covert-channel identification. This is im­
portant because information-·flow technique is equally applicable to analyzing 
other system properties, e.g. penetration and integrity. In addition to be able to 
identify all potential covert storage channels, this system does not generate false 
illegal flows that indicate nonexistent storage channels [8, 9], a serious problem 
that exists in all previous such automated tools [ 3, 5, 12, 14]. 

4. 2 Integration of Timing-Channel Analysis into the Automated System 
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Fig. 4.1. Structure of the Automated Covert-Channel Analysis System 

The FI in the automated system derives global flows based on the characteristics 
of storage channels. That is, it derives an altering flow in a TCB primitive to a 
global variable and a viewing flow in the same or a different TCB primitive from 
the same global variable to a user interface variable. Since timing channels are 
characterized in this paper in a similar way to storage channels, i.e., they are 
described in terms of altering and reading some system state (global variables 
and user interface variables), the formal methods can be easily incorporated 
into the FI for it to derive global flows that lead to potential timing channels. 
Specifically, to detect a global flow that leads to a tightly coupled direct timing 
channel, we use the same criteria to that in the FI for storage channels to deter­
mine the altering flow and implement the "viewing part" in the FI to determine 
if the same global variable exists in any condition expression of an alteration or 
iteration statement. Similarly, to identify a global flow that leads to a loosely 
coupled direct timing channel, we augment the FI to derive the altering flow by 
determining if a user interface variable appears in any condition expression of 
an alteration or iteration stat8ment but need not do anything for the "viewing 
part". With all the functions necessary for deriving various kinds of global flows 
in place, e.g., deciding direct flows and inferred flows [5, 9, 16) and tracing 
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aliases among variables [ 9, 16], etc., the implementation of an automated tool 
for timing-channel identification requires no extra effort beyond the augmenta­
tion of the FI with a few additional criteria for deriving altering and viewing 
flows. Little change is needed in the FG and in the FA because (1) flow genera­
tion does not involve channel characteristics and (2) flow analysis employs a 
technique independent of any specific format of flows and, thus, can be applied 
directly for determining illegal flows leading to potential timing channels [ 8]. 

5 Hardware Timing-Channel Exceptions 

Systematic covert-channel identification conducted statically is not complete 
unless all potential channels can be identified. It is shown in [ 16] that 
source-code analysis is sufficient to detect all potential storage channels. This 
claim cannot be applied to timing channels, however. This is because, while 
the shared global variable that is used as the medium of information transmis­
sion in a storage channel exists independently of hardware, the process response 
time that is used for encoding information in a timing channel can vary from 
system to system depending on system configurations. 

We have shown that the existence of alternation and iteration statements in 
source code makes it possible for the existence of timing channels. These chan­
nels exist in each and every system that executes the source code independent 
of system structures. Hardware timing channels, on the other hand, may exist 
in some systems but may not exist in all systems. This dynamic nature of hard­
ware timing channels makes them undeterminable in source-code analysis. 
Taking an assignment statement for example, the operands of the statement 
may already be in the main memory, may need to be fetched from the secon­
dary storage, or may have to be keyed in from a user terminal. Depending on 
the whereabouts of the operands, the response time of executing the statement 
can be quite different. One caa thus take advantage of the above scenario to 
create a timing channel through the execution of the two programs shown in 
Pig. 5.1. This timing channel is of dynamic nature because its existence de­
pends on the hardware conditions (1) that the system must use a storage hierar­
chy offering different access times, (2) that user programs and data penna­
nently reside in the secondary storage and the use of the main memory is only 
for performance purpose, (3) that memory management in the system uses the 
policy of demand on request, that is, programs and data are loaded into the 
main memory only when the system receives an explicit request, and ( 4) that 
the system does not immediately invalidate all the global data in the main mem­
ory upon the termination of a process but only when insufficient memory is left 
does the system selectively invalidate the appropriate area based on some 
predefined replacement policy. Hence, when the sending process wants to send 
a "zero", it loads gv into the main memory so that the receiving process will 
experience a shorter response time to access gv. Conversely, when the sending 
process wants to send a "one", it does not load gv into the main memory so that 
the receiving process will experience a longer response time to access gv. This 
channel would not exist should any of the above conditions not hold. Also, this 
channel is not always reliable. For example, the value of gv may not still be 



Program for the sending process 

sender( signal) 

{ 
extern in t gv, gu; 
int i; 
if (signal) 

i = gu; 
else i = gv; 
} 
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Program for the receiving process 

receivier() 

{ 
extern int gv; 
printf('%d', gv); 
} 

Sending process 1. Modulate the use: load gv into main memory; 
2. Send a one: do not load gv; 
3. Send a zero: load gv. 

Receiving process 1. Receive data: observe response tin"ie; 
2. Receive a one: a longer response time; 
3. Receive a zero: a shorter response time. 

Fig. 5.1. A dynamic and system-depedent timing channel 

residing in the main memory when the receiving process starts to execute in 
order to receive a "zero" because gv may have already been preempted due to 
requests for the main memory from some other processes in the system. There­
fore, hardware timing channels have a certain level of noise determined by spe­
cific system structures and execution environments. 

The technique presented in this paper is only applicable to source-code analysis 
and cannot be relied upon for detecting all types of potential timing channels. 
lienee, source-code analysis alone is not sufficient to determine all potential 
timing channels that may appear in final systems. 

6 Conclusion 

We characterized the behaviors of timing channels that are reflected in source 
code. This characterization differs significantly from previous ones [ 11, 16] 
and immediately leads to formal methods for timing-channel identification in 
TCB source code. Algorithms are presented and, coupled with the various tech­
niques that have been previously developed for storage-channel identification, 
such as information-flow analysis [1, 2, 9, 11, 16] and variable aliasing [9, 
16], timing-channel identification can be carried out in a systematic way in 
TCB source code. Because c•f the similar approach we take in characterizing 
timing channels to that in characterizing storage channels, automated tools that 
have been previously built for storage-channel identification [ 3, 9, 12, 14] can 
be augmented with minimal effort for timing-channel identification. In particu­
lar, we discussed how to integrate the algorithms into the automated system 
described in (9]. 



74 

The shortcoming of source-code analysis is that it cannot reveal timing chan­
nels that result from hardware configurations. These channels, however, are 
generally difficult to use and are subject to a higher level of vulnerability during 
real-time information transmission. These channels can also be blocked or 
made virtually useless by changing system configurations and management poli­
cies. 
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