
Formal JVIethods and Automated Tool for
Timing-Channel Identification in TCB Source Codet

Jingsha He

VDG Inc.
6009 Brookside Drive

Chevy Chase, MD 208 J 5
U.S.A.

Virgil D. Gligor
Department of Electrical Engineering

University of Maryland
College Park, MD 20742

U.S.A.

Abstract. We characterize the properties of timing channels that
are reflected in source code and present formal methods for the
identification of these channels in source code of trusted comput­
ing bases (TCBs). Our <:tudy differs significantly from previous ones
which focus on a high-level characterization of timing channels
without leading to pra.;tical methods for their identification [11,
16]. We also discuss how to integrate the formal methods presented
into the automated system that has been previously developed for
storage-channel identification [9] to build an automated tool for
timing-channel identification in TCB source code which, other­
wise, is still carried out in an ad-hoc way due to the lack of general
and practical methods. The presented methods, however, cannot
be directly applied for detecting hardware channels that result from
hardware ~ystem configurations.

1 Introduction

Covert channels present a serious threat to secure computer systems and net­
works. These channels provide an illicit means of leaking sensitive information
from cooperative users who hrtve legal access to the information to unauthor­
ized users. Because the leakage of information is usually carried out through
variables and system states that are not part of the object representation in the
security model, information flows through these variables are not protected un­
der any multilevel mandatory f:ecurity policy. For example, the variable that
stores the total number of available disk blocks can be used to represent sensi­
tive information: the sending process can encode a signal by exhausting the disk
space and the receiving process can detect the signal by requesting an allocation

t Also available as ll3M Technical Report 85.0148, June 1992.
The work presented herein has been perf armed at IBM Corporation, 800 N. Frederick
Avenue, (1aithersburg, MD 2087 9, USA under a contract to VDG Inc. The views
expressed in this paper only refkct those of the authors and do not imply any product
offering from IBM. .

© Springer-Verlag Berlin Heidelberg 1992
Y. Deswarte et al. (eds.), Computer Security - ESORICS 92

58

of some disk space. Information transfer is realized when the receiving process
is returned an error message for its request or observes a different response time
from its execution due to the unavailability of the disk space.

There are two types of cover! channels: storage channels use shared global vari­
ables/data structures as the media for information transmission, whereas timing
channels take advantage of different response times observed by the receiving
process under the manipulation of the sending process [11, 13]. Both types of
channels present an equal threat to secure systems and are required in [15] to
be formally analyzed for a system to be evaluated at the B3 level and above.
However, past work in this area has mostly centered on identifying storage
channels, which has led to the development of several formal methods and
automated tools [3, 5, 7, 9, 11, 12, 14, 16), and very little has been done in
timing-channel analysis. The only relevant technique that can be immediately
applied to timing-channel analysis is the interference approach [4, 7). But its
drawbacks are equally obviom [7]. Another method, the Shared Resource Ma­
trix (SRM) Methodology [11], is only useful for deriving transitive closures of
timing channels between processes but offers little help in identifying the primi­
tive channels in the first place. To this date, timing-channel identification is
still mostly conducted in an ad-hoc way due to the lack of general and practical
methods.

Hu introduced the notion of ''fuzzy time" as the basis for the development of a
collection of mechanisms to block the use of timing channels [10] . While fuzzy
time can reduce the effective bandwidth of timing channels by randomizing the
response time of system events to users, it also destroys other necessary system
synchronization mechanisms for legitimate user communication and for
real-time control. ThereforE', the use of fuzzy time in dealing with timing chan­
nels is limited to military and commercial applications where the use of timing
channels is the only primary concern. To this date, identification and analysis
still remains the only practical way of meeting the relevant requirements in [15]
concerning the use of covert channels.

In this paper, we study the properties of timing channels and propose formal
methods for systematic identification of these channels in TCB source code. We
also discuss how to integrate these formal methods into the automated system
that has been previously developed for storage-channel identification [9].
These formal methods cannot be directly used for detecting hardware timing
channels, however. Nevertheless, it is still necessary and important to devise
effective ways of identifying covert channels in TCB source code (i.e., software
channels) although hardware channels usually have a higher bandwidth. This is
because hardware channels are generally of a dynamic nature, i.e., they may
not exist in every system that runs the same TCB but will also depend on spe­
cific hardware system configuradons, whereas software channels are always of a
static nature, i.e., they exist in every system that runs the same TCB. In addi­
tion, past experience indicates that most software channels have a substantially
higher bandwidth than that specified in [15] for security evaluation and certifi-

59

cation [9, 16] and the difference would only become greater with the advent of
faster processors and architectural improvement.

This paper is organized as follows. In the next two sections, we characterize
timing channels and present formal methods for identifying these channels
based on the characterization. In Section 4, we describe the automated system
that has been previously developed for storage-channel identification [9 J and
discuss the integration of the formal methods into the system to build an auto­
mated tool for timing-channel identification. In Section 5, we discuss hardware
timing channels that canno1 be determined through source-code analysis be­
cause of their dependence 01~ hardware configurations and thus conclude that,
unlike storage channels, source-code analysis alone may not reveal all the po­
tential timing channels. Finally, we conclude this paper in Section 6.

2 Characterization of Timing Channels

The general definition of covert channels does not distinguish between the two
types: storage and timing, but is presented in terms of system behaviors with
respect to the multilevel mandatory policy in the security model and its inter­
pretation in real implementations. That is, given a security model M and its
interpretation I (M) in a system, a potential communication between two sub­
jects (processes) in I (M) is covert if and only if such communication between
the two corresponding subjects (processes) in M is illegal [16]. This definition
also implies that covert channels that exist in source code are only potential
channels and only a subset of these potential channels are exploitable as real
channels. Thus, real-time scenarios must exist for a potential channel to be a
real channel [9, 11, 16]. The distinction between a storage channel and a tim­
ing channel is made at this time when real-time scenarios to use it is con­
structed. If a scenario involves the altering and viewing of a shared global vari­
able by the two communicating processes, the channel is a storage channel. If a
scenario involves having the sending process modulate its use of some system
resources in such a way that the response time of the receiving process can be
affected, the channel is a tinJing channel [11, 16]. Therefore, it is possible that
a covert channel can he both a storage channel and a timing channel.

While the scenario for the use of a storage channel indicates a property that can
be directly used for the identification, that for the use of a timing channel pro­
vides little insight of how to characterize the static nature of timing channels
and of how to reach a general solution for the identification. This is mainly
because the words "altering" and "viewing" in characterizing storage channels
can immediately find their semantics in source code but the word "modulate"
in characterizing timing channels does not have any simple semantics to directly
map into. Timing channels should be characterized in such a meaningful way
that a formal method for the identification can be easily obtained. Therefore,
the key to a satisfactory solution to this problem relies upon the proper interpre­
tation of the word "modulate;" this along with the characterization of timing
channels are offered below.

60

Sending process 1. Modulate the use: position disk head at Tl or T2;
2. Send a one: position disk head at T 1;
3. Send a zero: position disk head at T2.

Receiving process 1. Receive data: position disk head at T3;
2. Receive a one: need a longer response time d1;
3. Receive a zero: need a shorter response time d2.

Fig. 2. 1. A direct timing channel using the hard disk

2.1 Timing Channel Types

Timing channels can be characterized in various ways. In this paper, we char­
acterize timing channels based on the number of processes that have to be in­
volved in the communication through the channels. In general, timing channels
can be classified into two types: direct and indirect. In a direct timing channel,
the sending and the receiving processes are the only two processes that are
needed to make use of the channel: the sending process modulates its use of a
system resource so that the response time of the receiving process can be af­
fected without the involvement of any other user processes in the system. An
example of a direct timing channel is depicted in Fig. 2.1: the sending and the
receiving processes share the use of a hard disk and the sending process modu­
lates the use of the hard disk by positioning the disk head in different cylinders
so that the response time of the receiving process is affected.

In contrast to a direct timing channel, the use of an indirect timing channel has
to involve other processes in the system for the receiving process to observe
different response times. An example of an indirect timing channel is depicted
in Fig. 2. 2: the sending process is able to affecting the execution of processes
that are to be scheduled before the receiving process. Depending upon the exe­
cution of these processes, the response time of the receiving process can be
different. The sending process can achieve this goal by exhausting the system
resources that the processes in the scheduling queue (i.e., P1, P2, etc.) have to
acquire before they start so that their execution has to be suspended due to the
lack of necessary resources. This channel exists in TCB systems that use a sim­
ple FIFO scheduling scheme and becomes useless if the scheduler randomly
selects the next process to occupy the CPU.

2.2 Minimum Requirements for Timing Channels

61

Scheduling Queue

Sender '--------'~---~--
Sending process 1. Modulate the use: change response times of P1, P2, ... ,

2. Send a one: make P1 or P2 or ... execute longer;
3. Send a zero: make P1 or P2 or ... execute shorter.

Receiving process 1. Receive data: execute on CPU;
2. Receive a one: a longer delay before execution;
3. Receive a zero: a shorter delay before execution.

Fig. 2. 2. An indirect timing channel caused by process execution

Kemmerer gives a set of "minimum" conditions for the existence of a timing
channel [11], which can be summarized as follows:

(a) The sending and the receiving processes must have access to the same re­
source.

(b) The sending and the receiving processes must have access to a time refer­
ence such as a real-time clock.

(c) The sending process mu~t be capable of modulating the receiving process'
response time for detecting a change in the shared resource.

(d) There must be some synchronization mechanism for initiating the proc-
esses and for sequencing the events.

Same as in the case of a storage channel, condition (d) requires that a real-time
scenario exist for a potential timing channel and conditions (a), (b) and (c)
describe the inherent properties of the channel. Condition (c) is not necessary
for a timing channel, howevo.r. A counter-example is the indirect timing chan­
nel in Fig. 2. 2. In general, in an indirect timing channel, it is not nec~ssary for
the receiving process to be able to detect a change made to a shared resource by
the sending process. It would be sufficient that the response time of the receiv­
ing process be affected in response to the change to the shared resource. There­
fore, condition (c) cannot be a minimum condition for all types of timing
channels, in particular not for indirect timing channels.

We now formulate a set of requirements as the minimum conditions for the
existence of a timing channel. Here we like to emphasize two points. First, the
sending process must be able to alter the system state in such a way that the
response time of the receiving process can be affected. The part of the system
state that is represented in source code consists of all the resources that can be
shared by processes. Thus, it includes all global variables (those that do not
belong to any process and retain their values from one process to another) and
all user interface variables (those whose values can be set by the user when
invoking a process). It is not required, however, that the receiving process share

62

access to the same resource as the sending process. That is, condition (a) is too
excessive.

Second, the receiving process must be able to access a time reference. It is not
necessary, however, that the sending process also have access to a time refer­
ence. This is because only the receiving process needs to have the knowledge of
the response time to decode information. The way in which the sending process
modulates the use of a shared resource does not depend on any factors related
to time but only on what signal (i.e., one or zero) it intends to send to the
receiving process. That is, condition (b) is overstated as a minimum require­
ment. The time reference can be a real-time clock in the system that is ac­
cessed by the receiving process or a real-time clock out of the system that the
invoking user of the receiving process can read upon return from the execution.

We list, the following four minimum conditions for the existence of a timing
channel:

(a') The. sending process must be able to alter the system state.
(b') The receiving process must have access to a time reference.
(c') The alteration of the system state by the sending process can affect the

response time of the execution of the receiving process.
(d') There must be a synchronization mechanism for initiating the sending and

the receiving processes and for ordering system events.

Since the above conditions are minimum, the absence of any would make it

impossible for the sending and the receiving processes to transmit information.
If condition (a') is not true, the sending process would have no way of affecting
the execution of the receiving process. If condition (b') is not true, the receiv­
ing process would have no way of distinguishing between different response
times or determining the order of the arrival of multiple system events [17] to
decode the signals from the sending process. If condition (c') is not true, the
information encoded by the sending process cannot be decoded by the receiving
process. Finally, condition (d') determines whether a potential timing channel
is a real channel. If there is no way of using a potential channel in real time, the
channel cannot be a real channel, the same requirement as that for a real stor­
age channel [9, 16]. Note that, when a static timing-channel identification is
conducted in source code based on the above criteria, only conditions (a') and
(c') are used to derive the solutions because condition (b') trivially holds in all
systems nowadays and condition (d') can only be applied manually to deter­
mine the set of real channels out of the potential channels discovered statically.
Note also that condition (d') may require the sending process also to access a
time reference for synchronization purpose, which depends on specific syn­
chronization mechanisms but is not an inherent property of timing channels,
and thus is not considered as a minimum condition in this paper.

The two example timing channels in Fig. 2.1 and Fig. 2.2 satisfy all the above
conditions. In particular, the sending process alters the system state by position­
ing the disk head at different cylinders in Fig. 2.1 and by affecting the execution
of the processes in the scheduling queue in Fig. 2.2. The alterations to the

63

system state in both cases cause the receiving process to execute with different
response times.

3 Identification of Potential Timing Channels
Timing-channel identification in source code can only reveal the set of poten­
tial channels [9, 11, 16] 1 • The similarity of the characteristics of a timing chan­
nel to those of a storage channel indicates that methods and theories that have
been developed for storage-channel analysis are applicable to timing-channel
analysis as well. Therefore, the identification of timing channels should be con­
ducted in TCB source code where all the potential software channels in final
system implementations reside [9, 16]. We can model TCB source code as a
tuple <V, E> where V is a set of variables and E is an ordered list of rules
describing information flows among the variables in V. Shared system resources
in source code are also expressed in the form of global variables/data structures
that can be referenced in more than one procedure. Consequently, the part of
the system state that is defined in terms of system resources and user interface
variables can be uniformly defined in terms of variables only.

Definition 3 .1. (System State) The system state in source code consists of (1)
all the global variables that are shared by more than one process and (2) all the
user interface variables whose values can be set by the user when invoking a
process. Variables of the above types are called state variables. 0

3.1 Direct Timing Channels

Definition 3.2. (Direct Timing Channels) A direct timing channel is a timing
channel that satisfies the following two conditions:

(1) The channel consists of two processes Ps and Pr where Ps is the sending
process and Pr the receiving process.

(2) The execution of Ps can affect the response time of the execution of Pr .0

Let us now identify all the possible behaviors of two arbitrary processes that can
be exploited in a direct timing channel for information transmission. Let us
assume that, for any two sequences of statements S1 and S2, the amount of
time for executing S1 is always different from that for executing S2 unless S1

and S2 are semantically the same. Therefore, the execution of the different
branches of an alternation statement always takes a different amount of time if
the two statement sequences in it are not semantically the same. That is, the
execution of the statement:

if (C) then S1 else S2

takes a different amount of time when C~O from that when C=O. Similarly, the
amount of time for executing an iteration statement:

1
From now on in this paper, all discussions on timing-channel identification and analysis in
source code refer to the identification of potential timing channels.

64

while (C) do S

will depend on the value of C. Consequently, all variables in the condition ex­
pression C of an alternation or iteration statement, whether global or local, can
affect the execution time of the statement.

The determination of semantic equivalence of S1 and Sz is not straightforward,
however. Strictly speaking, S1 and S2 are semantically equivalent if and only if
they always take the same amount of time to execute. Thus, S1:{x=l;y=O;} and
S2 :{y=10;x=O;} are usually considered semantically equivalent. However, the
above notion cannot be simply extended to statements of the same type, e.g.,
assignment statements are semantically equivalent. For example, S1 :{x=y;} may
need a different amount of time to execute from S2 :{x=O;} depending on the
amount of time to fetch y. In general, deciding the semantic equivalence of two
arbitrary statement sequences is equivalent to the halting problem and is thus
unsolvable in any static analysis. Consequently, we take the common practice
of conservatism in security and assume that S1 and S2 in an alternation state­
ment is always semantically different. The problem with this conservative as­
sumption is the possibility of generating false flows, that is, those that do not
exisr when S1 and S2 are indeed semantically the same. This problem is un­
avoidable but these false flows will be singled out at the time of constructing
real-time scenarios for the corresponding potential channels because there are
none for them.

There are two ways in which the response time of the receiving process can be
affected by the sending proc~ss. First, the sending process can set (or trans­
form) the system state in such a way that the execution of the receiving process
is affected directly by the system state. Second, the sending process can ma­
nipulate its own execution to control the time at which the receiving process
starts to execute. In other words, the sending process controls how the receiving
process executes in the first way and when the receiving process executes in the
second way. We call the former a tightly coupled timing channel and the latter a
loosely coupled timing channel.

3.1.1 Tightly Coupled Timing Channels

For a tightly coupled timing channel:

(l) the sending process is able to alter a global variable during its execution,
(2) the receiving process has the value of the same global variable appear in

the condition expressior: of ail alternation or iteration statement,
(3) the sending process sets the global variable to a value corresponding to the

value of the signal (i.e., one or zero) it intends to send to the receiving
process, and ,

(4) the receiving process detects the signal by observing the response time of
its execution.

A tightly coupled timing channel is illustrated with the two example procedures
in Fig. 3.1. To transmit one bit of information using this channel, the sending
process sets the value of the signal it intends to send to the receiving process.

Sending process

t_ sender(signal)
int signal;
{

}

extern int gv;
gv = signal;

65

Global variable

extern int gv;

Receiving process

t _receiver ()
{

}

extern int gv;
int lv =; gv;
if (lv) '

delay(2);
else delay (1);

Fig. 3.1. A tightly coupled timing channel

The receiving process observes the response time of its execution and detects a
"one" when the response time corresponds to a two-unit-time delay and a
"zero" when the response time corresponds to a one-unit-time delay. To trans­
mit a string of "zeros" and "ones" from the sending process to the receiving
process, the two procedures have to be executed repeatedly with one bit per
invocation. For example, if the sending process wants to send "11 01011101" to
the receiving process, it invokes procedure t_sender ten times with the value of
the signal being properly set on each invocation. The receiving process also
invokes procedure t_receiver ten times to detect the response times of
"2212122212" from its executions. Fig. 3.2 graphically shows the process of
transmitting this string of bits from the sending process to the receiving process.
Here we assume that the execution of the sending process always takes a
o~e-unit-time delay and that process switching time is negligible.

The identification of a potential tightly coupled direct timing channel in any
formal method can be described by the following algorithm:

Algorithm 3 .1. (Identification of a Tightly Coupled Timing Channel)
(1) Select a global variable V;
(2) Determine if V can be altered in the program of a process (sending

process);
(3) Determine if the value of V is used in the condition expression of an

alternation or iteration statement in the program of another process
(receiving process);

Sender 1 1 0 1 0 1 1 1 0 1

Receiver 1 D D U D D D D D D D
0 3 6 8 11 13 16 19 22 24

Time
Delay
27

Fig. 3. 2. Information transfer using a tightly couple timing channel

66

End.

It is easy to see that the example in Fig. 2.1 is a tightly coupled timing channel.
It is also easy to see that a resource-exhaustion channel which is viewed as a
classical storage channel [9, 16) is also a tightly coupled timing channel since
different response times can occur during the execution of the receiving process
depending on whether the shared resource is still available. Note that one way
of handling a resource-exhaustion storage channel is to prevent the error mes­
sage from being returned to the receiving process after the resource has been
exhausted, which would eliminate the corresponding storage channel. How­
ever, the fact that the same channel is also a (tightly coupled) timing channel
makes it possible to still leak sensitive information through exhausting the same
resource although it is no longer usable as a storage channel.

3.1. 2 Loosely Coupled Timing Channels

For a loosely coupled timing channel:

(1) the sending process is able to control the response time of its own execu­
tion, which requires that the value of a user interface variable appear in
the condition expression of an alternation or iteration statement,

(2) the sending process can set the user interface variable in order to manipu­
late the response time of its execution, and

(3) the receiving process detects the signal from the sending process by observ-
ing the time it starts execution or the time it stops execution and responds.

A loosely coupled timing channel is illustrated with the two example procedures
in Fig. 3. 3. To transmit one bit of information using this channel, the sending
process sets the value of the interface variable to control the amount of time it
will spend on execution. The receiving process observes the time when it starts
to execute and detects a "one" if it starts late and a "zero" if it starts early.
Therefore, to send a string of "zeros" and "ones" from the sending process to
the receiving process, the two procedures have to be repeatedly executed with
one bit per invocation. For example, if the sending process wants to send
"1101011101" to the receivittg process, it invokes procedure l_sender ten times
with the value of the signal being properly set on each invocation. The receiving

Sending process

!_sender(signal)
in t signal;
{

}

int lv = signal;
if (lv)

delay(2);
else delay(l);

Receiving process

1 receiver() c
delay(l);

}

Fig. 3.3. A loosely coupled timing channel

67

Sender 1 1 0 1 0 1 1 1 0 1

Receiver 1

0 2 5 7 10 12 15 18 21 23 26

Fig. 3. 4. Information tranfer using a loosely coupled timing channel

process also invokes procedure !_receiver ten times to detect its relative starting
times of "2212122212". Fig. 3.4 graphically shows the process of transmitting
this string of bits from the sending process to the receiving process. Here we
assume that the execution of the receiving process always takes a one-unit-time
delay and that process switching time is negligible.

It is clear that, in a loosely coupled direct timing channel, the sending process
does not need to share any data with the receiving process. Moreover, the send­
ing process does not have to be paired with any specific receiving process. Any
process can be the receiving process to detect signals from the sending process.
Therefore, it is sufficient to identify only the sending process in this type of
channels that can potentially send or broadcast information to any other proc­
esses that wish to receive the information. The algorithm for detecting a timing
channel of this type can be described as follows:

Algorithm 3 .2. (Identification of a Loosely Coupled Timing Channel)
(1) Select a user interface variable V;
(2) Determine if the value of V is used in the condition expression of an

alternation or iteration statement in the program of a process (sending
process);

(3) Do nothing to any other process (receiving process);
End.

3. 2 Indirect Timing Channels

Definition 3.3. (Indirect Timing Channels) An indirect timing channel is a tim­
ing channel that satisfies the following two conditions:

(1) The channel consists of n+2 processes Ps , P1, Pz, ... , Pn, Pr , n> 1, in
which (a) Ps and Pr are the sending and the receiving processes, respec­
tively; (b) P1, P2, ... , Pn are other user processes in the system; and (c)
the execution of the processes observes the same order as that in the above
representation.

(2) The execution of the sending process Ps can affect the response time of
one or more of the other n processes P1 , P2, ... , Pn. D

Note that the environment for the use of an indirect timing channel is different
from that for the use of a direct timing channel. It is generally believed that the
introduction of other processes into a system can make a timing channel virtu­
ally useless due to the incurred noise level. We can see that this way of resolving

68

conventional timing channels, however, has the potential of introducing indi­

rect timing channels. This is because, from Definition 3.3 (2), (a) Ps and a Pi,

l<i<n. i.e., the process whose response time can be directly affected by Ps,

have a tightly coupled direct timing channel in which Ps and Pi are the sending

and the receiving processes and (b) Pr can be thought of as one of the processes
that is added to the system on purpose for generating noise to the direct timing

channel between Ps and Pi . We thus have a simple rule for detecting an indi­
rect timing channel:

Rule 3 .1. (Existence of Indirect Timing Channels) For each tightly coupled
direct timing channel, there always exists an indirect timing channel between
the sending process of the direct timing channel and any process except the
receiving process of the direct timing channel. 0

The above rule indicates that the identification of indirect timing channels does
not require additional effort beyond that of direct timing channels. Indirect tim­
ing channels can be discovered as a by-product of direct timing-channel identi­
fication.

3. 3 Application in TCB Source Code

The analysis of TCB source C<)de (along with hardware examination) is an inte­
gral part of covert-channel analysis. Since user processes have to invoke TCB
primitive~ to gain access to system resources, an analysis of the entire TCB
source code is mitigated to a static analysis of individual primitives. The deter­
mination of potential covert channels between processes, therefore, becomes a
job of identifying potential covert channels between primitives. Consequently,
one must consider two primitives and one shared global variable for tightly cou­
pled direct timing channels and one primitive and one user interface variable
for loosely coupled direct timing channels in the analysis.

The procedure of identifying a potential tightly coupled direct timing channel
between primitives can be described as follows:

Procedure 3 .1. (A Tightly Coupled Timing Channel)

End.

(1) Select a global variable that is shared by primitives;
(2) Select a pair of primitives for analysis;
(3) Invoke Algorithm 3.1 with the shared global variable and with the

two primitives as the sending and the receiving processes, respec­
tively;

The output of the identification can be represented in the form of a set of matri­
ces with each one for the potential channels through one global variable in
which primitives are labeled under the variable as being able to send or to re­
ceive information through th·~ channel. An example matrix for global variable
file->f_count in Secure XEND(2 (which represents the availability of an entry in

** * * * file->f count

Sender creat
creatsem
fork
open
opensem

Receiver creal
creatsem
dup
exec
fork
open
opensem

69

***** ----- tightly coupled -----

!* scenarios of use *I

I* scenarios of use *I

Fig. 3.5. A tightly coupled direct timing channel in Secure XENIX

the system-wide file table) is shown in Fig. 3.5. 3 To determine the set of real
channels, real-time scenarios of use must be constructed. For example, an ex­
amination of the use of the file table by primitive fork reveals that the way in
which fork alters the variable file->f_count is not consistent with the scenario
for sending a signal. Thus, primitive fork is only a potential sender (determined
statically) but cannot be a real sender for this channel (determined in real
time).

A similar procedure can be formulated for the identification of a potential
loosely coupled direct timing, channel between primitives:

Procedure 3.2. (A Loosely Coupled Timing Channel)
(1) Select a primitive for analysis;

End.

(2) Select a user interface variable whose initial value can be set by the
user upon the invocation of the selected primitive;

(3) Invoke Algorithm 3.2 with the user interface variable and with this
primitive as the sending process;

Each output matrix, however, only contains the list of potential senders because
all primitives are potential receivers and need not be explicitly shown.

4 Automated Tool for Timing-Channel Identification

We have developed an automated system for the identification of potential cov­
ert storage channels in TCB source code and have successfully applied the sys-

2
XENIX is a registered trademark of Microsoft, Inc.
Secure XENIX was developed by IBM Federal Systems Company. It is now marketed as
Trusted XENJX by Trusted Infor:nation Systems, Jnc.

3
The matrix may not contain all primitives that can send and/or receive information through
the timing channel.

70

tem to Secure XENIX [6, 9]. Our past experience shows that this system is able
to identify all potential storage channels in TCB source code. We discuss in this
section how to integrate the timing-channel identification algorithms presented
in this paper into this system to make it able to identify both types of potential
channels in TCB source code. The integrated system cannot detect timing
channels resulting from hardware configurations, however, which we discuss in
the next section.

4.1 The Automated Storage-:-Channel Identification System

The automated system takes the C language of a TCB implementation and gen­
erates a list of illegal information flows that can lead to covert storage channels
in the TCI3. Each such illegal flow is represented by a global variable, the
identities of the two primitives that can alter and view the global variable, and
the altering and the viewing flow paths and flow conditions that show how and
under what condition the global variable is altered and viewed. If a real-time
scenario exists for this flow to take place, it indicates a real covert channel in
the TCB and must be handled properly.

This system consists of three components: the Flow Generator (FG), the Flow
Integrator (FI) and the Flow Analyzer (FA), whose structure and the relation­
ships among the components are depicted in Fig. 4.1. The function of the FG is
to take C functions of TCB scurce code and translate each individual statement
into a set of flow relations represented in a universal format. These flow rela­
tions are handed over to the FJ for flow integration to derive global flows at the
TCB user interface. These global flows are then analyzed in the FA to deter­
mine their legality with respect to the multilevel mandatory security policy im­
plemented in the TCB. The final output of the entire system is the set of illegal
flows that lead to potential covert storage channels. Finally, real-time scenarios
are constructed for these potE:ntial channels to determine the set of real covert
storage channels. The last step has to be carried out manually because the de­
termination of real flows fro1"'1 a static analysis is equivalent to the halting prob­
lem [9] and is thus unsolvable.

This system has the following two distinctive features. First, the separation of
flow generation from integration makes the FI and the FA general-purpose
tools independent of any programming language. To use the tools for covert
channel analysis in TCBs of E language other than C, one only needs to build a
separate FG module that par1;es the language and supplies the set of flow rela­
tions. Second, the separation of flow integration from analysis makes the FI a
general-purpose tool not solely for covert-channel identification. This is im­
portant because information-·flow technique is equally applicable to analyzing
other system properties, e.g. penetration and integrity. In addition to be able to
identify all potential covert storage channels, this system does not generate false
illegal flows that indicate nonexistent storage channels [8, 9], a serious problem
that exists in all previous such automated tools [3, 5, 12, 14].

4. 2 Integration of Timing-Channel Analysis into the Automated System

Functions, data for
TCB primitive 1

Flow relations for
TCB primitive 1

Security model
in terpre ta tio n

in code

71

[
--
TCB interface flow
paths and conditions

Flow Analyzer

(FA)

Functions, data for
TCB primitive n

Flow relations for
TCB primitive n

Security model
interpretation

in code

Fig. 4.1. Structure of the Automated Covert-Channel Analysis System

The FI in the automated system derives global flows based on the characteristics
of storage channels. That is, it derives an altering flow in a TCB primitive to a
global variable and a viewing flow in the same or a different TCB primitive from
the same global variable to a user interface variable. Since timing channels are
characterized in this paper in a similar way to storage channels, i.e., they are
described in terms of altering and reading some system state (global variables
and user interface variables), the formal methods can be easily incorporated
into the FI for it to derive global flows that lead to potential timing channels.
Specifically, to detect a global flow that leads to a tightly coupled direct timing
channel, we use the same criteria to that in the FI for storage channels to deter­
mine the altering flow and implement the "viewing part" in the FI to determine
if the same global variable exists in any condition expression of an alteration or
iteration statement. Similarly, to identify a global flow that leads to a loosely
coupled direct timing channel, we augment the FI to derive the altering flow by
determining if a user interface variable appears in any condition expression of
an alteration or iteration stat8ment but need not do anything for the "viewing
part". With all the functions necessary for deriving various kinds of global flows
in place, e.g., deciding direct flows and inferred flows [5, 9, 16) and tracing

72

aliases among variables [9, 16], etc., the implementation of an automated tool
for timing-channel identification requires no extra effort beyond the augmenta­
tion of the FI with a few additional criteria for deriving altering and viewing
flows. Little change is needed in the FG and in the FA because (1) flow genera­
tion does not involve channel characteristics and (2) flow analysis employs a
technique independent of any specific format of flows and, thus, can be applied
directly for determining illegal flows leading to potential timing channels [8].

5 Hardware Timing-Channel Exceptions

Systematic covert-channel identification conducted statically is not complete
unless all potential channels can be identified. It is shown in [16] that
source-code analysis is sufficient to detect all potential storage channels. This
claim cannot be applied to timing channels, however. This is because, while
the shared global variable that is used as the medium of information transmis­
sion in a storage channel exists independently of hardware, the process response
time that is used for encoding information in a timing channel can vary from
system to system depending on system configurations.

We have shown that the existence of alternation and iteration statements in
source code makes it possible for the existence of timing channels. These chan­
nels exist in each and every system that executes the source code independent
of system structures. Hardware timing channels, on the other hand, may exist
in some systems but may not exist in all systems. This dynamic nature of hard­
ware timing channels makes them undeterminable in source-code analysis.
Taking an assignment statement for example, the operands of the statement
may already be in the main memory, may need to be fetched from the secon­
dary storage, or may have to be keyed in from a user terminal. Depending on
the whereabouts of the operands, the response time of executing the statement
can be quite different. One caa thus take advantage of the above scenario to
create a timing channel through the execution of the two programs shown in
Pig. 5.1. This timing channel is of dynamic nature because its existence de­
pends on the hardware conditions (1) that the system must use a storage hierar­
chy offering different access times, (2) that user programs and data penna­
nently reside in the secondary storage and the use of the main memory is only
for performance purpose, (3) that memory management in the system uses the
policy of demand on request, that is, programs and data are loaded into the
main memory only when the system receives an explicit request, and (4) that
the system does not immediately invalidate all the global data in the main mem­
ory upon the termination of a process but only when insufficient memory is left
does the system selectively invalidate the appropriate area based on some
predefined replacement policy. Hence, when the sending process wants to send
a "zero", it loads gv into the main memory so that the receiving process will
experience a shorter response time to access gv. Conversely, when the sending
process wants to send a "one", it does not load gv into the main memory so that
the receiving process will experience a longer response time to access gv. This
channel would not exist should any of the above conditions not hold. Also, this
channel is not always reliable. For example, the value of gv may not still be

Program for the sending process

sender(signal)

{
extern in t gv, gu;
int i;
if (signal)

i = gu;
else i = gv;
}

73

Program for the receiving process

receivier()

{
extern int gv;
printf('%d', gv);
}

Sending process 1. Modulate the use: load gv into main memory;
2. Send a one: do not load gv;
3. Send a zero: load gv.

Receiving process 1. Receive data: observe response tin"ie;
2. Receive a one: a longer response time;
3. Receive a zero: a shorter response time.

Fig. 5.1. A dynamic and system-depedent timing channel

residing in the main memory when the receiving process starts to execute in
order to receive a "zero" because gv may have already been preempted due to
requests for the main memory from some other processes in the system. There­
fore, hardware timing channels have a certain level of noise determined by spe­
cific system structures and execution environments.

The technique presented in this paper is only applicable to source-code analysis
and cannot be relied upon for detecting all types of potential timing channels.
lienee, source-code analysis alone is not sufficient to determine all potential
timing channels that may appear in final systems.

6 Conclusion

We characterized the behaviors of timing channels that are reflected in source
code. This characterization differs significantly from previous ones [11, 16]
and immediately leads to formal methods for timing-channel identification in
TCB source code. Algorithms are presented and, coupled with the various tech­
niques that have been previously developed for storage-channel identification,
such as information-flow analysis [1, 2, 9, 11, 16] and variable aliasing [9,
16], timing-channel identification can be carried out in a systematic way in
TCB source code. Because c•f the similar approach we take in characterizing
timing channels to that in characterizing storage channels, automated tools that
have been previously built for storage-channel identification [3, 9, 12, 14] can
be augmented with minimal effort for timing-channel identification. In particu­
lar, we discussed how to integrate the algorithms into the automated system
described in (9].

74

The shortcoming of source-code analysis is that it cannot reveal timing chan­
nels that result from hardware configurations. These channels, however, are
generally difficult to use and are subject to a higher level of vulnerability during
real-time information transmission. These channels can also be blocked or
made virtually useless by changing system configurations and management poli­
cies.

Acknowledgment

The authors are grateful to Matthew Hecht and Janet Cugini of IBM, and
Shyh-Wei Luan of VDG Inc. for reviewing early versions of this paper. The
authors would also like to thank Tom Tamburo of IBM for his continuous sup­
port during this research work.

References

1. Andrews, G. R. and R. P. Reitman, "An Axiomatic Approach to Infor­
mation Flow in Programs," ACM Trans. Prog. Lang. Syst., Vol. 2, No.1,
Jan. 1980, pp. 56-76.

2. Denning, D. E., "A Lattice Model of Secure Information Flow," Comm.
ACM, Vol. 19, No. 5, May 1976, pp. 236-243.

3. Eckmann, S. T., "Ina Flo: The FDM Flow Tool," in Proc. lOth Nat'l
Compt. Sec. Conf., NBS, Gaithersburg, MD, 1987, pp. 175-182.

4. Feiertag, R. J., "A Technique for Proving Specifications Are Multilevel
Secure," Computer Science Lab Report CSL-109, SRI, Menlo Park, CA,
1980.

5. Gasser, M., Building A Secure Computer System, Van Nostrand Reinhold
Company, New York, NY, 1988.

6. Gligor, V. D., C. S. Chandersekaran, R. S. Chapman, L. J. Dotterer, M.
S. Hecht, V\r.-D. Jiang, A. Johri, G. L. Luckenbaugh, and N. Vasudevan,
"Design and Implementation of Secure Xenix," IEEE Trans. Software
Engr., Vol. SE-13, No. 2, Feb. 1987, pp. 208-221.

7. Haigh, J. T., R. A. Kemmerer, J. McHugh, and W. D. Young, "An Expe­
rience Using Two Covert Channel Analysis Techniques on a Real System
Design," IEEE Trans. Software Engr., Vol. SE-13, No.2, Feb. 1987, pp.
157-168.

8. He, J. and V. D. Gligor, "Information-Flow Analysis for Covert-Channel
Identification in Multilevel Secure Operating Systems," in Proc. Computer
Security Foundations Workshop l/1, Franconia, NH, June 1990.

9. He, J., An Automated System for the Identification of Potential Covert
Channels in Multilevel Secure Operating Systems, Ph.D. Dissertation, Uni­
versity of Maryland, College Park, MD, Dec. 1990.

10. Hu, W.-M., "Reducing Timing Channels with Fuzzy Time," in Proc.
IEEE Symp. Research u:1 Security and Privacy, Oakland, CA, May 1991.

75

11. Kemmerer, R. A., "Shared Resource Matrix Methodology: An Approach
to Identifying Storage and Timing Channels," ACM Trans. Compt. Syst.,
Vol. 1, No. 3, Aug. 1983, pp. 256-277.

12. Kramer, S. 1\1., "The Mitre Flow Table Generator -Volume 1," M83-31
Volume 1, Mitre Corporation, Bedford, MA, Jan. 1983.

13. Lampson, B. W., "A Note on the Confinement Problem," Comm. ACM,
Vol. 16, No. 10, Oct. 1973, pp. 613-615.

14. McHugh, J. and D. I. Good, "An Information Flow Tool for Gypsy," in
Proc. IEEE Symp. Security and Privacy, Oakland, CA, April 1985, pp.
46-48.

15. Trusted Computer System Evaluation Criteria, U. S. Dept. of Defense Stan­
dard DOD 5200.28-STD, Dec. 1985.

16. Tsai, C.-R., V. D. Gligor, and C. S. Chandersekaran, "On the Identifica­
tion of Covert Storage Channels in Secure Systems," IEEE Trans. Soft­
ware Engr., Vol. 16, No. 6, June 1990, pp. 569-580.

17. Wray, J. C., "An Analysis of Covert Timing Channels," in Proc. IEEE
Symp. Research on Security and Privacy, Oakland, CA, May 1991, pp.
2-7.

