
KryptoKnight Authentication and Key
Distribution System

Refik Molva1 , Gene Tsudik2 , Els Van Herreweghen2 and Stefano Zatti2

1 EURECOM Institute, Sophia Antipolis, 06560 Valbonne, France
molva@eurecom.fr

2 IBM Research Laboratory, CH-8803 Riischlikon, Switzerland
{gts,evh,zat} @zm·ich.ibm.com

Abstract. This paper describes K1·yptoKnight, an authentication and
key distribution system that provides facilities for secure communication
in any type of network environment. KryptoKnight was designed with
the goal of providing network security services with a high degree of com­
pactness and flexibility. Message compactness of KryptoKnight's proto­
cols allows it to secure communication protocols at any layer, without
requiring any major protocol augmentations in order to accommodate
security-related information. Moreover, since KryptoKnight avoids the
use of bulk encryption it is easily exportable. Owing to its architectural
flexibility, KryptoKnight functions at both endpoints of communication
can perform different security tasks depending on the particular network
configuration. These and other novel features make KryptoKnight an at­
tractive solution for providing security services to existing applications
irrespective of the protocol layer, network configuration or communica­
tion paradigm.

1 Introduction

The importance of secure communication in today's distributed systems is uni­
versally acknowledged. For this reason, much effort has been recently invested
into providing security services in a variety of network and operating system
environments. One of the best-known efforts is Kerberos [12, 13], a network se­
curity service originally developed at MIT and subsequently incorporated into a
number of architectures and commercial offerings. In spite of its popularity and
widespread acceptance, Kerb eros has received its share of criticisms (e.g., [5]).
Moreover, it has a number of limitations that preclude its widespread use for all
communication paradigms.

In this paper we desc.rihe a new network security service called KryptoKnight,
developed jointly by IBM Zurich and Yorktown Research Laboratories and im­
plemented at the IBM Zurich Research Laboratory. KryptoKnight provides au­
thentication and key distribution services to applications and communicating
entities in a network environment. Unlike Kerberos, which uses protocols based
on the well-known Needham-Schroeder [9] scheme, KryptoKnight implements
a family of novel authentication and key distribution protocols designed with

© Springer-Verlag Berlin Heidelberg 1992
Y. Deswarte et al. (eds.), Computer Security - ESORICS 92

156

assurance of security with respect to a number of attacks. (The design of the
underlying protocols is not treated here; it is addressed in [2], [3) and [4].)

From a user's perspective, KryptoKnight provides facilities and services which
are very similar to those of Kerberos. In fact, Kerberos was used both as a step­

ping stone and a reference point in the design of KryptoKnight. The resulting
system offers several advantages over Kerberos:

a number of novel features of the underlying protocols described in [2), [3)
and [4).
system design that avoids many of the problems attributed to Kerberos that
are described in [5].

- support of a major subset of Generic Security Service API (GSS-API) (14).

This paper is organized as follows. An overview of the KryptoKnight archi­

tecture is given in the next section. Section 3 describes the protocols in more
detail. KryptoKnight's software structure is discussed in Section 4 and Section
6 concludes with a brief summary.

2 KryptoKnight Overview

Three types of principals are involved in KryptoKnight operation: users (or other

network entities), programs (services) and authentication servers (ASs). As in
Kerberos, the AS is a trusted third-party component which is able to access the
principal database, check and create authentication tokens and tickets. The goal
of KryptoKnight is to provide authentication and key distribution services to
users and programs with the aid of an AS. These services are necessary in order
to:

Support users in delegating their identity to other entities (e.g., application

programs),
- Assist communicating entities in mutual authentication by providing the

evidence of each entity's delegation by a legitimate user,
- Enable entities to authenticate the origin and contents of exchanged data.

The operating environment is assumed to be untrusted; communication links

may be susceptible to wiretapping, interception and replay of messages. More­
over, malicious programs may reside in the same computers as the legitimate

ones and may try to access, read and modify their data. It is, therefore, very
important for the authentication services not to be vulnerable to masquerading
by potential intruders exploiting the exposures inherent to this environment.

KryptoKnight offers four service classes (described in detail below):

1. Single Sign-On (SSO)
2. Two-pa.rty Authentication
3. Key Distribution
4. Authentication of origin and contents of data

157

netlogin(u)

I

USER 1 password? "''CC-------
1 password(
1-------
I oklfail, ticket r-c:e--------

Fig. 1. Single Sign-On Protocol

2.1 Single Sign-On

Prior to starting any activity on his behalf, the user authenticates himself to the
KryptoKnight system by executing the kklogin command on a public worksta­
tion. The purpose of this command is to perform a unified, network-wide login
for the user.

Kklogin triggers a message exchange between the local (stub) KryptoKnight
program executing the command and the AS (see Figure 1). In the first mes­
sage, the user tells the AS that he wants to login, specifying his own name. This
message allows the AS to authenticate the user as it contains a value which
is a function of both the current time and the user's password. This feature
is referred to a.s pre-authentication. The second message contains the reply
from the AS, which is sealed with a key derived from the user's password. At this
point, kklogin prompts the user for his password and uses this password to unseal
the AS's reply, retrieving the certificate (ticket, in Kerberos parlance), contained
in it. A successful result implies that the user provided a correct password and
has proven his identity. The ticket, obtained by the user, will subsequently be
inherited by any activity running on the user's behalf (the format of the ticket
will be described in more detail in section 3.2). Using the certificate through
KryptoKnight primitives, an entity can communicate with remote peers and
prove that it is, in fact, executing on behalf of this particular user. Since user
authentication takes place only once (until the user explicitly terminates the
login session by executing the kklogoff command) and any number of local pro­
grams can utilize its result when authenticating themselves to remote programs
(services), this operation is called single sign-on or SSO.

Alternatively, some programs that reside on relatively trusted systems may
need a delegation certificate that lasts longer than the lifetime of a certificate pro­
vided through single sign-on. Examples of such programs are application servers

158

or administration programs that enjoy the security of physically protected sys­
tems. A long term delegation certificate can be provided through the kkinstallkey
command executed by the administrator on the system where such a program
has to run; in this case, no single sign-on operation is needed.

2.2 Two-Party Authentication

Once delegat€d by a human user, an entity can use the KryptoKnight Application
Programming Interface (API) library to obtain further proofs of its delegation
in order to authenticate itself to remote peers. Every entity that engages in
authentication is linked with the KryptoKnight API library and, at run-time,
issues procedure calls to obtain these services.

An entity, referred to as INITIATOR, starts the authentication process by
issuing an API call that returns an authentication message. This authentication
message is sent to the remote peer entity, known as RESPONDER, using an peer­
entity-specific communication mechanism. When the RESPONDER receives the
message, it issues a corresponding API call that verifies the validity of the incom­
ing authentication message. Depending on the authentication parameters, either
one-way authentication (where only the INITIATOR is authenticated to the
RESPONDER) or mutual authentication (where both parties attain mutual au­
thentication) can be performed. In case of one-way authentication, the first and
only authentication message authenticates the INITIATOR to the RESPON­
DER. If the verification by the RESPONDER is successful, the RESPONDER
is sure that the INITIATOR is truly acting on behalf of the user specified in the
authentication message. In case of mutual authentication, the exchange of two
more authentication messages, created via respective API calls, is required: one
will authenticate the RESPONDER to the INITIATOR, the other will complete
the protocol by finally authenticating the INITIATOR to the RESPONDER.

2.3 Key Distribution

The authentication protocols described in the previous section require that INI­
TIATOR and RESPONDER share a secret key. In order to obtain a shared
secret key, the two parties must first. engage in a dialog with a KryptoKnight
AS. The specifics of this dialog are discussed in subsequent sections. However,
the entire process of contacting the AS, proving one's identity, and receiving
keys, is hidden from the entities using KryptoKnight. In other words, whether
or not the two parties share a key, they make the same API calls with exactly
the same parameters. Once a key is issued and received, it is cached (again, in
a transparent manner) for later use.

The relationship between the peer entities and KryptoKnight components
involved in program authentication is summarized in Figure 2.

159

··································· ,

INITIATOR

peer-specific protocbl
carrying

authentication

messages
RESPONDER

----------- API --~-------- ---------~---make or check ·
authentication

messages

KryptoKnight KryptoKnight

Responder API
library

;~~~~~;:~~·-·· :~~~iii~~s
protocol ~ KryptoKnight ~ protocol

. . . .
: AS : '
' '
' '
' '

Fig. 2. Program Authentication using KryptoKnight

2.4 Data Origin and Content Authentication

Successful authentication between two entities establishes a KryptoKnight session3

which is characterized by their shared secret key. This session serves as a context
for further secure communication between the two parties. It will be terminated
either explicitly, by one of the communicating parties sending to the other party
a request to end the session, or implicitly upon expiration of the shared key.

Until session termination, the entities can, through the KryptoKnight API,
authenticate the contents and the origin of data messages exchanged.

3 GSS API[14] uses the term security context. For the purpose of this discussion the
two notions are equivalent.

160

3 KryptoKnight Protocols

The protocols implemented by KryptoKnight perform the following functions:

Authentication: mutual or one-way authentication between the initiator and
the responder, between the user and the AS, and between the initiator or
the responder and the AS.
Key Distribution: distribution of pair-wise keys to be used for authentication
and secure communication between two entities or between an entity and the
AS.
Integrity Protection: authentication of contents and origin of application mes­
sages.
Secure end-of-session: authenticated session termination.

3.1 Authentication

A B

Fig. 3. The Basic Authentication Protocol

The mutual authentication protocol is a three-way exchange between the
authenticating parties as depicted in Figure 3. In this figure,

A and B represent the names of the authenticating parties,
Na and Nb are 64 bit nonces generated respectively by A and B,
Kab is a secret key, shared by A and B,
M ACx.b is a 64-bit message authentication code, computed over the con­
catenation of its arguments, using the key Kab· M ACab can be based on
DES, MD4 or MD5 ([10], [11], [7]) (see section 4.6),
EB represents the exclusive-or operation.

161

The advantages and security features of this protocol are described in [2, 3].
It achieves mutual authentication of two communicating entities.

The one-way authentication protocol is derived from the mutual protocol by
A's sending to B the same expression as in the second flow of the latter protocol
with Na replaced by a timestamp, Nb by a nonce generated by A, i.e. Na, and
B's name by the one of A.

3.2 Key distribution

In order to run the authentication protocol, the authenticating parties need
to share a secret cryptographic key. Since typically no key is shared other than
between the AS and the principals, when a two parties need a shared key, the AS
generates a new random key and distributes it to them using the key distribution
protocols. Key distribution is performed using a generic message component
called a ticket. Tickets are used for secure transfer of a secret key from one party
called tickeLissuer (typically the AS) to another party called tickeLreader. A
ticket is sealed with a key shared by the tickeLissuer and the ticket_reader. Each
ticket is also identified by the name of an entity called third_party, which is the
party the ticket_reader should share the secret key with. The ticket consists of
a set of cleartext fields and an encrypted token. The cleartext fields are:

- N r: 64 bit nonce generated by ticket_reader
- N i: 64 bit nonce generated by tickeLissuer; this is actually a keyed one-way

function of Nr, e.g., the encryption of Nr under the secret key contained in
the ticket

- name of third_party
- the expiration time of the secret key contained in the ticket

The computation of the token (64 bits) is based on an expression similar to
the one used in the basic authentication protocol:

token = MACK m (N; tf!ihird_party, Nr, N; tf!iickeLissuer, expiration time)ti:JI< s

where:

- Km, the reader_key, is a key shared by tickeUssuer and tickeLreader;
- I<., the session_key, is the secret key distributed by the ticket (to be used

from here on, until expiration of the key, between tickeLreader and third_party).

The name of ticket_issuer and ticket_reader are assumed to be implicitly
known by the reader of the ticket, and are therefore not part of the ticket's
cleartext fields.

Since knowledge of Km is necessary to unseal the ticket, the secrecy of /{8 is
ensured. Moreover, since it is impossible to extract the correct [(8 from a ticket
that has been tampered with, and since the ticket_reader of a ticket can tell if
the extracted Ks value is the right one (by checking whether Ni is actually a
cryptographic function of Nr), it is impossible for an intruder to tamper with
the ticket without the reader of the ticket being aware.

A ticket can be used for the following purposes:

162

to send a good random cryptographic key to a user during the single sign-on
to send a shared secret key to a pair of entities that need to authenticate
one another

Single sign-on tickets Single sign-on is essentially the distribution of a strong
key between a user and the AS. During execution of the protocol, the user
receives two tickets from the AS, to be read by the user and the AS respectively.
The ticket for the user is:

ticket(reader= user, issuer= AS, third_ party= AS, reader-key= Km, session_key = K,)

where:

1\m is a key derived from the user's password and is stored in the principal
database of the AS along with the user's name. KryptoKnight on the user's
workstation can generate this key using the user's password and a public
password-to-key conversion algorithm.

I\, is a key that will be shared between the user (reader) and the AS
(third_party) for the duration of the single sign-on period (until the user
explicitly erases the key by entering the kklogoff command). Application pro­
grams running on the user's behalf will use this key as the user's personal
identification secret in further authentication and key distribution with the
AS.

The other ticket is stored by the user and sent to the AS every time the user
wants to communicate with the AS. This is a ticket:

ticket(reader =AS, issuer= AS, third_party =user, reader-key= K,., session-key= K,)

where Kas is a secret key known only to the AS.

Entity /Peer tickets For key distribution to peer entities, two tickets are made
by the AS (one for each entity) both containing the same secret key. For example,
the ticket for A to communicate with B is:

ticket(reader =A, issuer= AS, third_party = B,reader_key = Ka,session_key = Kab)

where:

Ka is the key distributed to A during the single sign-on or a key installed on
both A's workstation and in the AS database if A has a manually installed
long-term key (e.g., if A is a server program);
Kab is the shared key that will be used in the authentication between A and
B.

163

3.3 Integrity protection

Integrity protection and sequencing of messages exchanged between two parties
sharing a session key K, is achieved by sending some mtegrity information,
together with the data. This integrity information consists of:

a session-timestamp, that is a constant for the messages exchanged in the
course of a particular session

~ a message sequence number, which is incremented by one for each new mes­
sage within a session

~ JVJ ACx, (data, session_timestamp, sequence_ number)

The MAC expression provides integrity of the data, while timestamp and
sequence number are used to detect replayed and out-of-order messages.

3.4 Secure end-of-session

The session established between two peers upon successful completion of an
authentication, can be terminated in an authenticated way by either one of the
peers by sending to the other a delete_sesszon message containing following token:

token = MACKs (N i, N r, N i EB (initiator \ responder))

where (initiator I responder) is the concatenation of the names of both parties.
The use of a similar expression as used for authentication ensures it has the
same degree of security. However, the different use of the principals' names in
the end-of-session token makes it unique and not reusable in any authentication
protocol message.

3.5 Authentication Protocol Flexibility

Once peer entities have obtained (either through single sign-on or through the
kkinstallkey interface) a secret key corroborating their identity, they can trig­
ger a key distribution and authentication protocol through the API primitives.
The actual protocol to be executed between the KryptoKnight system compo­
nents and between the peer entities is dynamically determined depending on the
following conditions

~ authentication type: the initiator entity can choose between mutual authen­
tication and one-way authentication by using the appropriate initial API
primitive.
authentication and key distribution sequence: the protocols several alterna­
tives for interleaving authentication and key distribution flows:

• Key distribution prior to authentication: in the protocol depicted
in Figure 4, the KryptoKnight initiator component first exchanges key
distribution messages with the AS and, only after this phase is complete,
the initiator triggers the authentication exchange with the responder.
This scheme potentially enables the AS to enforce access control during

164

the key distribution phase by granting pair-wise keys based on the au­
thorizations of the initiator and responder. The drawback of this scheme
is that the protocol pattern is fixed, that is, the key distribution protocol
is always triggered by the initiator and never by the responder, with a
lack of adaptability with respect to the existing communication patterns.
This disadvantage is obvious in the case of a wide-area network where
the AS and the responder are near to one another, while the initiator is
very from from the AS.

request for pair-wise key
I

----------------------~
I

pair-wise key tickets :
----------------------1

for Initiator and Responder :

mutual or one-way:authentication

using pair-wise ~ey

Fig. 4. Key distribution prior to authentication

• Adaptive protocol (authentication interleaved with key distribution) :4

in the protocol illustrated in Figure 5, the initiator sends an authentica-
tion message to the responder. The further course of the protocol is then
determined by the existing connectivity patterns between responder, ini-
tiator, and AS. In case the responder can reach the AS, it will exchange
key distribution messages with the AS before sending a reply message to
the initiator, conveying the new key to the initiator. In case where there
is no such connectivity between responder and AS, the responder will
send back a reply message to the initiator without having contacted the

4 The two modes of this protocol are sometimes referred to as push and pull modes.

165

1 st authentication 1 message
I

: key distribution
1<---------------------~
1 (if AS is reachable)

2nd authentication : message

rc- ___ ~e1 gls!@~tJq~ _____ ~
(if still necessary) 1

3rd authentication : message

Fig. 5. Adaptive protocol

AS. In this case the initiator will execute the key distribution protocol
with the AS and send the key to the responder in the third and final
message of the authentication protocol.

The adaptive scheme is applicable only in the case of mutual authentica­
tion, because at least a return flow from responder to initiator is necessary
to convey the key (possibly even a third flow). The scenario whereby the
responder contacts the AS is used by the X9.17 standard [1].
When one-way authentication is performed, the first scheme for key distribu­
tion (prior to authentication) is the only one possible, since then the secret
key must be conveyed to the responder in the only authentication message
available.
The advantage of interleaving the authentication and key distribution flows
is that the protocol pattern is not fixed as to whether the initiator or the
responder performs the key distribution exchanges with the AS. As a result
of this flexibility, the connections between the peer KryptoKnight stubs and
the AS can be established in the optimal way in order to minimize the
amount of communication and connections between the peer systems and
the AS. The KryptoKnight implementation offers the possibility of adapting
the protocol execution pattern to a given network by individually setting the
authorization to connect to the AS from each node of the network. Using the

166

flexible protocol pattern presented in Figure 5, the KryptoKnight stub on a
machine authorized to connect to the AS always exchanges key distribution
flows with the AS irrespective of its role as an Initiator or Responder, whereas
a stub on a machine without such an authorization always relies on the
partner stub for the key distribution.

3.6 Layer Adaptability

As described earlier, KryptoKnight protocol messages consist of a cleartext part
(names, nonces, timestamps) and a 64-bit token. The token is a 64-bit integrity
check over the message's cleartext part and contains, in the case of a ticket, also
the session key contained in the tickeL

Kerberos messages and tickets are much longer than their KryptoKnight
counterparts and often contain information that could be retrieved out of the
context of the communication. For example, source and destination addresses are
already present in most protocol's standard headers. So in most cases it could
be sufficient to transmit only an integrity-check over this information without
actually transmitting the information itself. But since Kerberos messages and
tickets are completely encrypted, they have to be transmitted in their entirety,
which imposes a bandwidth and space requirement that cannot be satisfied when
authentication is part of a lower-layer protocol (where vacant protocol fields are
few).

While both Kerberos and KryptoKnight can thus be used for authentica­
tion in high-layer application protocols, the compactness of the KryptoKnight
messages is clearly an advantage in spa~e-critical, lower-layer protocols.

3. 7 Communication Paradigms

Another advantage of KryptoKnight protocols over Kerberos is that in Kryp­
toKnight the initiator and the responder can be peer entities, i.e., they can bear
the same privileges with respect to the AS, whereas Kerberos assumes an asym­
metric distribution of roles and privileges by distinguishing two types of entities,
clients and servers.

In Kerberos (see Figure 6), the initiator is always a client and the responder
is always a server. The difference between a client and a server is that the client's
secret key (J<c) needed by the AS for sealing the ticket, concisely expressed here
as T{I{cs}I<c, containing the pair-wise key (I<cs), is obtained through single
sign-on; thus, the AS does not have to store f{c in its database since it can retrieve
it from T {I< c} J{ as that was distributed during single sign-on. On the other hand
the server's key (K,), used to seal the pair-wise key U<cs) in T{Kcs}Ks, must
be a long-term key which the AS retrieves from its principal database, since
the Kerberos protocol flows do not permit the server to provide the AS with
any information prior to the distribution of the pair-wise key. Consequently, the
AS must store the secret key of each server (K.), whereas it does not have to
remember the secret keys of the clients that can be dynamically retrieved from

167

key request, T{Kc}Kas

authentic. message 1, T{Kcs}Ks

authentic. message 2

Fig. 6. Asymmetric Client-Server requirements in Kerberos

single sign-on tickets. This asymmetry has a very strong implication on the users
of the Kerberos protocol:

- any entity that can play the role of a responder in the authentication process
must be configured as a server, that is, a long-term key that is equivalent to
the one obtained through single sign-on on the client systems must be man­
ually installed on each server system and entered into the principal database
of the AS.

- even if the entities playing the role of initiator and responder are genuinely
peers, in order to comply with the asymmetry imposed by the Kerberos
authentication protocol they must be configured as a client and a server in
the above described sense.

In KryptoKnight, no particular asymmetry is imposed by the protocol, the
initiator and the responder can be configured either both as clients, both as
servers or one as a client and the other as a server. This property follows from
the adaptive KryptoKnight protocol scheme (Figure 5) where there are sufficient
flows exchanged between the initiator and the responder before the key distri­
bution (triggered either by the initiator or by the responder) so that the key
distribution request sent to the AS can always contain single sign-on tickets for
both parties. Only the particular KryptoKnight protocol where key distribution
takes place before any authentication exchange like in Kerberos (as shown in
Figure 4) suffers from the same shortcoming as the Kerberos protocol, requiring
the responder to be a server.

168

3.8 Nonces vs Timestamps

In MIT Kerberos the problem of replay by wiretapping intruders is solved by
using timestamps that prove the freshness of messages. This technique on one
hand largely simplifies the protocol design, but has on the other hand some
major drawbacks:

- authenticating parties must have access to synchronized and reliable clocks
in order to get timestamps and to verify them.
the strength of the authentication is inversely proportional to the skew be­
tween the clocks; in other terms, the tighter the synchronization, the stronger
the security.
clock servers that seem to be a reasonable solution for several applications
do not suit the requirement of authentication because an authentication
service requires a trusted clock server and a trusted clock server must be
authenticated prior to its use.

In KryptoKnight, the basic authentication protocol (Figure 3) as well as the
three-party (Figure 4 and 5) and single sign-on protocols use nonces for replay
detection. Nonce-based authentication requires at least one more flow than the
timestamp-based one, but avoids the problems of relying on an external mech­
anism like synchronized clocks. Nonetheless, one-way authentication in Kryp­
toKnight has to be based on timestamps, being designed to be compatible with
the one-way Kerberos protocol that uses only one message.

3.9 Exportability

As described in [2, 3, 4], the underlying authentication protocols do not require
a full-blown encryption system, but, rather a strong one-way hash function. As
designed and implemented, KryptoKnight is freely-exportable as it does not
make use of data encryption. Both MD4 and MD5 are one-way hash functions
not covered by export regulations. Even with DES, KryptoKnight uses only
the encryption function (i.e., the code does not include DES decryption.) Where
secrecy is absolutely necessary, e.g., in hiding session keys during key distribution
or protecting principals' key in the database, a simple XOR-ing technique is used
(see [2, 3]).

4 Software Features

The KryptoKnight software consists of separate modules organized in three lay­
ers (see Figure 7):

The protocol entity layer consists of modules implementing the active entities
for the different KryptoKnight protocols, including the user, the initiator,
the responder, the AS, and the admin modules.
The KryptoKnight API consist of initiator verbs, responder verbs and com­
mon verbs (used by both initiator and responder) and can be called either

169

directly by the peer entities or indirectly through the GSS API interface
verbs, that have been implemented on top of it.

- the basic operations layer implementing basic operations used by the protocol
entities like the computation of security-critical fields by the token module,
the management of the key cache, the network interface, etc.

- the cryptographic layer that includes the encryption or checksum function
and an optional key storage facility that should exist only if a cryptographic
device is available.

The advantage of this modular implementation is that any individual module
can be replaced or modified without any impact on the remaining modules. In
the remaining sections the most interesting modules will be addressed.

4.1 The API Module

The API Module implements the verbs enabling entities using KryptoKnight
(e.g., application programs) to authenticate to one another (initiator and re­
sponder verbs), and subsequently exchange integrity-protected data and securely
terminating the session (common).

4.2 The User Module

The User module implements the user commands kklogin, kklogoff, kkinstallkey,
kkpasswd, kkservrekey.

As discussed in section 2.1, kklogin performs single sign-on for users. The
resulting ticket can be used by entities running on behalf of the user to authen­
ticate to other entities, and is destroyed when the user performs a kklogoff.

kkinstallkey installs a long-term masterkey for a server program. A user can
also change his password by executing the kkpasswd command. Like kklogin, this
command triggers a message exchange between the local kkpasswd program and
the AS, during which the user is prompted to enter both the old and the new
password. If the AS is able to verify the identity of the user and the integrity
of the message containing the user's new password, it will replace the user's
password in its database by the new one.

Long-term capabilities can be renewed using the kkservrekey command.

4.3 The Admin Module

The administrative interface was taken from Kerberos 5. Using the Admin com­
mands a human user acting as administrator can access the Principal Database
and manipulate the principal definitions. All operations performed by the Admin
module are local operations on the site where the Principal Database resides.

170

KryptoKnight Code Organization

Fig. 7. Kryptol(ni!!,ht ,oft ware structure

171

4.4 The Token Module

The token module implements the algorithms for computing the cryptographic
token included in tickets, authentication and end-of-session messages. The com­
putation of protocol-specific expressions is confined to this module and all the
active protocol entities involved in KryptoKnight protocols use the token module
to make and verify security-critical messages. The generation and the verifica­
tion of all tickets and authenticators is performed through a set of primitives
that constitute the token interface.

A feature of the token module is the possibility of isolating secret keys into
a single module within the software. If safe storage is available to store a master
key-encryption key for each installation of KryptoKnight, e.g., if a cryptographic
hardware device is used or if a strictly local file exists (like jtmp on some UNIX
implementations), then the token interface can provide a clear boundary beyond
which no secret key appears in cleartext. In this case the keys exchanged at
the token module interface are encrypted by the token module under the master
key-encryption key and never appear in deartext except inside the token module
when they are included in or extracted from a ticket. The main advantage of this
confinement is that it eliminates any exposure to wiretapping (on LANs) while
session keys and tickets are manipulated through a network file system protocol
(like SUN NFS) operating on the cache files where higher-level modules store
them.

4.5 Communication Stub

The communication stub has the sole task of handling all communication with
the AS(s). Every workstation or host that runs kryptonized entities (including
single sign-on) must have a running communication stub. Of course, its services
are used only when AS involvement is necessary, i.e., for single sign-on and
key distribution. Communication stub is not used for two-party authentication
which, as described above, is obtained by exchanging entity-specific messages.

KryptoKnight interposes a unified process, called the communication stub,
between all kryptonized entities running on the same workstation and the AS(s).
However, the entities are completely unaware of any communication with the
AS. Of course, this means that the presence of the communication stub is entirely
transparent. Whenever there is a need to contact the AS, an AS-bound message
is composed and the AS interface function (invisible to the API), send_to_AS is
invoked. This function, in turn, uses an IPC mechanism (e.g., a UNIX pipe) to
deliver the message to the communication stub process. When the AS replies,
the communication stub forwards the reply (again, via IPC) back to the caller.

Another benefit of having a unified AS interface is the ease of changing
communication platforms. In its present incarnation, KryptoKnight assumes
TCP /IP- or SNA-based communication. (In other words, there are two distinct
communication stubs.) However, if other, e.g., NETBIOS or X.25, communica­
tion platforms are to be supported in the future, the conversion task is limited
to re-writing a fairly short (:::; 100 lines) and trivial piece of code.

172

4.6 The Integrity /Encryption Module

but The Integrity /Encryption Module provides integrity (for the Message Au­
thentication Codes and for integrity-protection of application messages) and
secrecy functions (for protection of the principals' keys in the database) to the
token and PDB (Principal Database) modules.

Currently several implementations of this module exist. One is based on
DES (7] used in Cipher Block Chaining (CBC) mode. The other two are based
on one-way hash functions: MD4 and MD5 (10, 11]. Both MD4 and MD5 had to
be slightly augmented to support the use of a key as a secret secret and/or suffix
as described in (16]). Secrecy is achieved, as described in Section 3.9 above, with
a simple XOR-ing technique.

5 Future Considerations

This section discusses some issues and items for future work.

5.1 Separation of AS and Database Master Keys

Currently, the database master key (with which the principal's keys in the
database are encrypted) and AS ticket key (Kas) are one and the same. This
is an artifact of Kerberos [13] and it should be changed as there is no intrinsic
requirement for these two keys to be the same. This issue must, of course, be
addressed in the course of separating AS and PDB functions (e.g., AS accesses
PDB via RPC).

5.2 Encryption/Signature Methods and Key Length

All encryption/integrity operations in KryptoKnight are currently carried out
using a single method: MD4/MD5 with secret prefix and/or suffix (16] or DES
(7]. This is not an inherent requirement. There are three distinct tasks requiring
encryption and/ or integrity services:

1. Key distribution to principals via ticket tokens. When a principal requests
a single sign-on ticket or an application ticket AS distributes the resulting
SSO- or session-key as part of a ticket token.

2. Key distribution to AS (by AS). The single sign-on ticket to be read by the
AS contains the same SSO-key as the ticket for the principal, however, the
token is computed using the AS's own ticket key Kas.

3. Encrypting principals' keys in the database (PDB). This service is used by
the AS and the PDB manipulation programs (Admin) to hide the contents
of principals' keys.

It is not necessary for these three tasks to use the same encryption/integrity
mechanism. AS, for example, could take advantage of stronger encryption meth­
ods such as RSA [15]. This should be trivial to implement since the AS would
be the only entity using it. The same is true of Item 3.

173

All keys in the current release, including the AS ticket key and the PDB
master key, are 64 bits long. For reasons alluded to above, session and SSO keys
must remain 64 bits since their size is tied to the size of tokens. However, there
is no such requirement for either the AS ticket key or the PDB master key. Both
can be longer, e.g., 128 or 512 bits.

5.3 Inter-Domain Support

KryptoKnight currently has no provisions for supporting inter-domain authen­
tication and access control. However, a number of inter-domain authentication
scenarios have already been designed. They are the natural extensions of the
current intra-domain protocol variations to the inter-domain case. Future work
is likely to include the support for the inter-domain environment.

6 Summary

This paper presented KryptoKnight, an authentication and key distribution sys­
tem which provides security services to applications and communicating entities
in a network environment. KryptoKnight is a fully functional system; it is im­
plemented (and operational) on both IBM RS/6000 and IBM PS/2 machines
under AIX operating system. However, there are no inherent dependencies on
either current hardware or operating system platforms.

In summary, KryptoKnight was designed with the benefit of Kerberos' expe­
rience and with the goal of providing a high degree of compactness and flexibil­
ity. Its message compactness, protocol flexibility and exportability make Kryp­
toKnight an attractive solution for securing existing applications and commu­
nicating systems at any protocol layer, irrespective of network configuration or
communication paradigm.

7 Acknowledgements

We are grateful to Phil Janson and Liba Svobodova for their careful readings and
insightful comments on the drafts of this paper. We also thank the anonymous
referees for their helpful reviews.

References

1. ANSI Banking- f{ey Management (Wholesale), ISO 8732 / ANSI X9.17, 1988,.
2. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, M. Yung, Sys­

tematic Design of Two-Party Authentication Protocols, Proceedings of Crypto'91,
August 1991.

3. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, M. Yung, System­
atic Design of a Family of Attack-Resistant Authentication Pmtocols, IEEE JSAC
Special Issue on Secure Communications, to appear in 1993.

174

4. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, M. Yung, A Mod­
ular Family of Secure Protocols for Authentication and [{ ey Distribution Draft, in
submission to IEEE/ACM Transactions on Networking, August 1992.

5. S.M. Bellovin, M. Merritt, Limitations of the I< erberos Authentication System,
ACM SIGCOMM Computer Communication Review, October 1990.

6. W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Transactions on
Information Theory, November 1976.

7. National Bureau of Standards, Federal lnfo,·mation Processing Standards, National
Bureau of Standards, Publication 46, 1977.

8. T. Lomas, L. Gong, J. Saltzer, R. Needham, Reducing Risks from Poorly Chosen
Keys, Proceedings of ACM Symposium on Operating System Principles, 1989.

9. R. Needham and M. Schroeder, Using Encryption for Authentication in Large
Networks of Computers, Communications of the ACM, December 1978.

10. R. Rivest, The MD4 Message Digest Algorithm, Proceedings of CRYPT0'90, Au­
gust 1990.

11. R. Rivest, The MD5 Message Digest Algorithm, Internet DRAFT, July 1991.
12. J. Steiner, The I<erberos Network Authentication Se,·vice Overview, MIT Project

Athena RFC, Draft 1, April 1989.
13. J. Steiner, C. Neuman, J. Schiller, Kerberos: An Authentication Service for Open

Network Systems, Proceedings of USENIX Winter Conference, February 1988.
14. J. Linn, Generic Security Service Application Program Interface, Internet Draft,

Jun1 1991.
15. R. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digital Signatures

and Public Key Cryptosystems, Communications of the ACM, February 1978.
16. G. Tsudik, Message Authentication with One- Way Hash Functions, Proceedings

of IEEE INFOCOM 1992. May 1992.

