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Abstract. In this paper, we demonstrate that it is possible to develop 
an authentication service as an integral part of a distributed operat­
ing system, subject to some requirements and extensions to the original 
Koyama-Ohta system. The basic RHODOS requirement is that users 
cannot be trusted, and therefore they cannot hold any cryptographic 
parameters, but their own passwords. The Authentication Service sup­
ported by the RHODOS distributed operating system provides the fol­
lowing operations: the distribution of the initial cryptographic parame­
ters, user login authentication, one-way and two-way authentication, and 
conference authentication. The operational properties have been demon­
strated by setting up a conference and authenticating conference partic­
ipants in different circumstance. 

Keywords: Identity-based Conference Key Distribution, Authentica­
tion, Distributed Operating Systems, Distributed Systems 

1 Introduction 

In a distributed computing environment, resources are shared among computing 
nodes that are located at different geographical locations. Remote access to data 
is very frequent. As a result, high volume of important and valuable information 
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is transmitted via insecure communication channels. This opens the possibility of 
attacks on the communication channels by intruders. There are two basic forms 
of attack: passive and active. In the case of the passive attack, data transmitted 
on the network can be disclosed to unintended recipients. In the latter case, data 
transmitted on the network can be modified. Intruders can also deny or delay 
message delivery. Furthermore, intruders can masquerade as legitimate users to 
read, modify existing data or submit false data. This implies that users can no 
longer trust each other. Given this, a distributed system by itself cannot trust 
the users either. In this paper, we shall only concentrate on the prevention of 
the active attack and the detection of masquerade. 

The requirement imposed by distributed systems is to protect data from 
tampering and to prevent masquerading. In order to do this, users must be 
authenticated before logging on to the systems. Detection of data tampering 
can be achieved via one-way authentication. Protection against masquerading 
requires the system and user to be able to mutually authenticate each other. 
This requires two-way (mutual) authentication. 

A distributed system offers another unique opportunity: resources can be 
shared among various nodes. This interaction corresponds to the notion of par­
ticipants communicating to each other in a conference. Typical applications of 
a conference scenario are concurrent group work and synchronous remote meet­
ings [GB89, NDV+91]. Authentication in a conference can be achieved by two­
way authentication. However, it is believed that there are more efficient methods 
for conference authentication. Therefore, authentication schemes adopted by a 
distributed system must also cater for conference authentication in an efficient 
manner. 

The solution to the conference authentication problem can be found in the 
scheme called Identity-based Conference Key Distribution System (ICKDS) pro­
posed by Koyama and Ohta [K088b]. It was designed to provide mutual authen­
tication among several parties simultaneously and at the same time to distribute 
a common key among all parties. Thus, at the end of a conference authentication 
process all participants can communicate with each other securely using the com­
mon conference key. This scheme applies Shamir's identity-based cryptosystem 
[Sha85] in conjunction with Diffie-Hellman's public-key cryptosystem [DH76]. 
The idea is to authenticate users by using their identification information. This 
scheme is general enough to be used for one-way and two-way authentication 
as well. There is currently no known implementation of ICKDS. Readers are 
referred to the ICKDS paper [K088b] for details of the authentication scheme. 
It will not be elaborated here. 

In this paper, we shall describe the design and implementation of an authenti­
cation server that is based on the ICKDS scheme but with functionally improved 
features such that it caters for the needs of distributed systems. The improve­
ments are outlined in Section 3. The development is based on the RHODOS 
[GGI+91] distributed system. The RHODOS Authentication Server supports 
conference authentication with simultaneous key distribution. At the same time, 
the server supports location transparency for conference participants. That is, 
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a participant does not need to know where other participants of the conference 
are located. The knowledge of their login names will suffice. The implemen­
tation is software-based since the Authentication Server is one of the servers 
of the RHODOS distributed operating system. The decision to place an au­
thentication service in a distributed operating system as its integral part, pro­
posed in [Gos91, GP91], was made for the security and performance reasons. 
The software-based approach also offers the flexibility for experimentation. 

The paper is organised as follows. Section 2 gives an overview of the au­
thentication service provided by RHODOS. Basic assumptions and operational 
extensions to the Authentication Server are described in Section 3. Section 4 
shows how RHODOS overcomes an effective attack on the ICKDS scheme that 
was published recently. The logical design of the authentication operations is 
given in Section 5. Current status of our research is reported in Section 6. The 
conclusion is given in Section 7. 

2 Overview of the Authentication Server of RHODOS 

The authentication service developed for the RHODOS distributed operating 
system is based on both a symmetric cryptosystem and the Identity-based Con­
ference Key Distribution System [Koy87, K088b] which is itself based on the 
public-key cryptosystem. Traces of the basic concept used in zero-knowledge 
proofs [GMR89] protocols can also be found in the distribution of the initial 
cryptographic parameters. The RHODOS' authentication service does not re­
strict authentication to be between users in a conference. It permits user-to­
server authentication as well as server-to-server authentication. 

The authentication operations of RHODOS can be described as both cen­
tralised and distributed. It is centralised in the sense that it relies on a trusted 
centralised server for initial identity authentication. User login authentication is 
a typical centralised authentication operation. Distributed authentication means 
the authentication procedure can be carried out by agents of the centralised au­
thentication servers without consulting the centralised server itself. Thus, the 
centralised server is not involved in every authentication carried out in the sys­
tem. User initiated authentication operations are typical example of distributed 
authentication. 

Distributed authentication is achieved by having an authentication server in 
each node. However, there is only one trusted centre as in the ICKDS scheme. 
This centre is known as the Central Authentication Server (CAS) and all other 
authentication servers are known as Authentication Server Agents (ASAs). The 
cryptographic parameters required by ICKDS are only generated by the CAS 
and distributed securely to the ASAs. They are never exposed to the users -
this is the critical assumption and feature of the RHODOS authentication. 

From the user point of view the authentication operation in RHO DOS is a 
simple sending of an authentication request to a local ASA. The users do not 
have any knowledge of the authentication scheme used by their local ASAs. In 
all cases, only the authentication result is returned to the users. This is done 
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for two reasons. First, the users cannot be trusted to hold any cryptographic 
information securely. Second, this has the advantage of changing the underly­
ing authentication scheme without affecting users that use the authentication 
service. 

The cryptographic parameters generated by the CAS when it first starts to 
run are g, P, Q, R, N, Kp, Ks and S;. These cryptographic parameters are 
defined below. They are identical to those defined by the ICKDS scheme. 

- P, Q, and R are large prime numbers 
- N=PxQ 
- g is a primitive root over GF(P), GF(Q) and GF(R) 
- Kp and Ks are the public and private keys of the trusted center, respectively. 

Kp is a prime such that (N · R)/2 < Kp < (N · R) and Ks has the property 
such that 

Kp · Ks = 1 (mod L) 

where L = lcm((P- 1), (Q- 1), (R- 1)). 
- Signature S; for user i whose identification information is I; is defined as 

follows: 
S; = If5 mod (N · R) 

Note that J;:: SfP mod (N · R). 

The parameters (P, Q, Ks) are collectively called the secret system-key, (g, N, 
R, Kp) are known as the public system-key and S; is the secret signature for 
user i [K088b]. The purpose of the secret system-key is to generate the public 
system-key and secret user signatures. The public system-key and the secret 
signatures when used together allow clients to be authenticated by the ASAs 
without consulting the CAS. 

3 Assumptions of the RHODOS Authentication 
Environment and Extensions to the ICKDS scheme 

Certain assumptions have been made on the operating environment of the RHO­
DOS' authentication service. They are as follows. 

- The system environment consists only of workstations. 
- Communications with remote entities are via insecure channels. 
- System software downloaded to workstations during bootup is authentic. 
- The CAS is trusted and is located in a physically secure environment, e.g., 

behind locked doors. 
- Users are not to be trusted. 
- Users do not generate or hold any cryptographic information. They only hold 

their own private passwords. 
- Cryptographic parameters are stored in the physical memory of workstations 

and are protected by the operating system. 
- The local RHO DOS kernel and local ASA are trusted by their local processes. 
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- No ASAs trust each other. 
- Identities of all communicating entities are unique and well known. In the 

case of RHODOS, the identities are in the system name form [GGI+91) and 
is known as a user SName. 

- System administrators are trusted. 

The physical environment for ICKDS [K088a) is very different to that of 
RHODOS [GGI+91). Some changes to ICKDS were needed to incorporate ICKDS 
into RHODOS. 

- ICKDS was designed as a key distribution system and in doing so it real­
izes only sender authentication. RHODOS, on the other hand, allows client 
messages to be sent as part of the authentication process. These messages 
are sent in the clear and are therefore vulnerable to attack. To overcome 
this problem, checksum of client messages is introduced into the RHODOS 
authentication protocol to avoid message modification. 

- The ICKDS protocol does not prevent message replay. This problem is 
avoided by use of time-stamps in the RHO DOS authentication protocol. 

- In ICKDS, the security of the cryptographic parameters are maintained in 
users' SmartCards. Their security is users' responsibility. SmartCards are 
not available in RHODOS. Thus, the security responsibility of the crypto­
graphic parameters are given to the Authentication Server Agents (ASAs) 
themselves. 

- The clients of ICKDS are restricted only to users. RHODOS allows server 
processes as well as user processes to be clients of the ASA. 

4 RHODOS' Handling of an Effective Attack on ICKDS 

At the November 1991 ASIACRYPT conference, an effective attack on the 
ICKDS scheme was presented in a paper by Shimbo and Kawamura [SK91). 
The attack requires the conspiracy of two or more participants of a conference, 
not including the initiator of the conference. By exchanging cryptographic infor­
mation generated for conference authentication the conspirators can effectively 
disclose the conference initiator's secret information (signature). 

This attack, however, does not cause any threats in our system. This is 
because one of our initial assumptions was not to trust the users. Therefore, 
in our design, no authentication information was ever given to users (or user 
processes). They are only informed of the success or failure of authentication. 

Without direct access to cryptographic information the attackers cannot con­
spire to disclose secret information in the manner described by Shimbo and 
Kawamura. It is, however, possible for attackers to obtain cryptographic infor­
mation by wire-tapping and thus mounting conspiracy attack in the original 
ICKDS protocol. To overcome this attack, we have added an additional layer of 
protection by encrypting the cryptographic information used for conference au­
thentication with the public key of the AS As. The details of this countermeasure 
is described in Section 5.3. 
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By not giving the users any secret information and a slight modification of 
the original ICKDS protocol we have eliminated this conspiracy attack. In fact, 
with this design, any user level conspiracies have been eliminated. 

5 Authentication Operations 

Authentication operations supported by RHODOS are: 

- The distribution of the initial cryptographic parameters; 
- User login authentication; 
- One-way authentication; 
- Two-way authentication; and 
- Conference authentication. 

The distribution of the initial cryptographic information is based on symmetric 
cryptosystem. User login authentication is based on a combination of symmetric 
cryptosystem and asymmetric cryptosystem. The other authentication opera­
tions are all based on the ICKDS scheme. The protocols used for the one-way 
and two-way authentication are basically the same as for the conference authen­
tication but with fewer messages. Their protocols will not be described here. 
Nevertheless, a brief operational description for them is given in Section 5.4. 
Details of the authentication protocols can be found in [Wan92]. 

5.1 The Distribution of the Initial Cryptographic Parameters 

In any secure environment there is always the problem of how to transmit some 
common secrets used for authentication from the trusted center to the intended 
receiver without revealing them to others. In the RHODOS' environment, this 
involves passing the cryptographic parameters that are generated by the CAS 
to the ASAs without compromising them. Typically, these cryptographic pa­
rameters are transmitted manually to the intended receiver either by the use of 
special couriers or by the use of special devices such as SmartCards. The latter 
is the method suggested by [Sha85] and employed by [K088b]. However, this 
method is restricted by the use of special hardware devices; RHODOS is not 
equipped with such devices. Accordingly, the distribution of the cryptographic 
parameters to ASAs in RHO DOS is performed at the time of workstation boot­
up. This scheme is based on the use of a symmetric cryptosystem as discussed 
in [SP89, Gos91). The scheme is, in fact, similar to the way the initial ticket is 
obtained in Kerberos [SNS88]. 

Suppose Workstation A in Fig. 1 has just been turned on by an administra­
tor, admin. Existing systems, after self-tests, will send download request to the 
file server. Workstations in RHODOS will, instead, prompt for a user id and a 
password, and they will not proceed until a login name and a password are en­
tered. Suppose admin has entered his/her login name and password, Workstation 
A then sends admin's login name to the CAS running on the Trusted Center 
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requesting for authentication. The CAS checks its authentication database to 
confirm that the login name it received is indeed a registered client and it has 
the authority to boot-up a workstation. The CAS then retrieves admin's private 
key from the database and uses it to encrypt the necessary cryptographic pa­
rameters. These parameters are the public system-key and signatures of admin 
and ASAA. The encrypted data is sent back to the ASA of Workstation A, 
ASAA. ASAA then uses admin's private key, converted from admin's password, 
to decrypt the data sent from the CAS. If the supplied pa.Ssword from admin 
is correct then the converted encryption key will be the same as the one used 
by the CAS for encryption. ASAA can therefore decrypt the message and ob­
tain necessary cryptographic parameters. As a consequence, the booting process 
continues. If ad min's password is incorrect then decryption will fail and ad min 
is asked to reenter his/her login name and password. The whole process starts 
all over again. 

Workstation A Trusted Centre 

adrnin -....;1~-., ----8 2 

3 

Insecure Channel 

Fig.l. Distribution of the Initial Cryptographic Parameters. 

The following protocol describes the information exchanged between various 
entities involved in this authentication scenario (Fig. 1). 

Message 1. admin -+ ASAA : ladmin, passwd (Plain-text) 
A system administrator, admin, powers-on Workstation A and he/she is 
prompted for his/her login name, ladmin, and password, passwd. He/she en­
ters this information which is passed to the local ASA, ASAA. 

Message 2. ASAA-+ CAS: Iadmin (Plain-text) 
ASAA sends the user's login name, Iadmin, to the CAS requesting authenti­
cation of the current user. 
CAS checks its authentication database to see whether admin is a registered 
client. If so, the CAS retrieves the symmetric key, Kadmin, which is known 
only to the CAS and user admin, from the authentication database and 
encrypts the following items using Kadmin: 

- admin's login name, Iadmin; 
- the public system-key, (g, R, N, Kp ); 
- admin's signature, Sadmin; and 
- ASAA 's signature, SAsAA 
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Message 3. 
CAS--+ ASAA : £K&<~min (Iadmin, g, R, N, Kp, Sadmin, SASAA) (Encrypted) 
The CAS sends the encrypted message to ASAA. The nature ofthis message 
exhibits the basic nature of zero-knowledge proofs in that it is a challenge 
from CAS to ASAA to decrypt this message. 
ASAA receives Message 3 and accepts the challenge by converting admin's 
password to an encryption key, K~dmin, and tries to decrypt Message 3. If 
admin's password is correct then K~dmin = Kadmin and thus it can decrypt 
Message 3, thereby obtaining necessary cryptographic parameters. The boot­
ing process then continues. If admin is an impostor then he/she does not 
have the right password which implies K~dmin '# Kadmin. Thus, ASAA has 
failed the challenge from CAS. 
Irrespective to the results of the decryption both the password and the con­
verted key are destroyed by ASAA after decryption. 
A side effect of this process is that ASAA is also sure that the information 
sent to it is genuine since only CAS can encrypt data using the correct user 
private key. 
Note that it is possible for this message to be wire-tapped by intruders. How­
ever, since it is encrypted it reveals nothing to the intruders. Furthermore, 
it is free from insider attack since the system administrator, in this case 
admin, is trusted. Therefore, admin cannot possibly wire-tap to obtain this 
message and then decrypts it with its own key to reveal the cryptographic 
parameters. This message, however, suffers from password guessing attack 
as in Kerberos [BM90]. 

The public system-key obtained from the CAS allows ASAA to perform 
authentication with its counterparts that also have the same public system-key 
without further interaction with the CAS. In fact, the public system-key and 
ASAA 's signature can be used to authenticate Workstation A to a file server for 
downloads. 

This scenario requires the ASA to be resident in a PROM so it can start 
to function before system software is downloaded. Since the hardware platform 
used in RHODOS, at this stage, is the standard Sun 3/50s, hence, this scenario 
is not implemented. Instead, the cryptographic parameters are passed to ASAA 
using the method described for user login authentication. 

5.2 User Login Authentication 

User login authentication is performed with the cooperation of the ASAs and the 
CAS. The exchanged messages for this scenario are illustrated in Fig. 2. Assume 
a is the user trying to login, L is taken to be the login process of Workstation A 
and ASAA the local ASA of Workstation A. The input from user a to the login 
process L is omitted from the following protocol. 

Message 1. L --+ ASAA : I a, passwd (Plain-text) 
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Fig. 2. User Login Authentication. 

User a tries to login and enters his/her login name, Ia, and private password, 
passwd. These are passed to the local ASA, ASAA, by the login process, L. 
L then destroys its copy of a's private password. 

Message 1.1. ASAA --+CAS: enquire_pub/ic_key (Plain-text) 
When ASAA does not possess the public key of CAS it sends a broadcast 
message requesting for such a key. Note that this message is not necessary 
if ASAA already possess the public key of CAS. 

Message 1.2. CAS--+ ASAA : KcAs (Plain-text) 
The CAS returns its public key, KcAs, to ASAA. At the same time, other 
ASAs may also return KcAs to ASAA. So, if there are discrepancy in the 
KcAS received by ASAA then it knows something is wrong. Note that if 
Message 1.1 was not sent then this message does not appear. 

Message 2. ASAA --+CAS: (Ia, £K,. (Ia), KAsA)KcAs (Encrypted) 
Having obtained the public key of CAS, KcAs, ASAA now encrypts the 
identity of a with a's symmetric key, Ka, which is converted from a's pass­
word. The resulting ciphertext, £K,. (Ia), is combined with the ASAA 's own 
public key, KAsAA, and encrypted using the public key of the CAS. The 
result of this is then sent to CAS. 
The point in encrypting a's identity with a's private key is to allow CAS to 
authenticate a directly without taking the risk of compromising the cryp­
tographic parameters to be sent in the next message due to cryptanalysis. 
By encrypting the complete message it stops attackers from substituting the 
public key of ASAA and can therefore decrypt the next message. 
The CAS can verify the message came from ASAA by checking its capabil­
ities. (Capabilities in RHODOS stops uncontrolled passing of access rights 
and detection of stolen capabilities.) The CAS then checks its authentication 
database to confirm a as a registered client by decrypting £K,. (Ia)· 
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Message 3. 
CAS-+ ASAA : (Ia, EK. (g, N, R, Kp, Sa, SAsAA) )KAsAA (Encrypted) 
When CAS is satisfied that user a is authentic it encrypts (i) the public 
system-key, (g, N, R, Kp ); (ii) a's signature, Sa; and (iii) ASAA 's signature, 
SAsAA using Ka. The resulting ciphertext together with a's identity is then 
encrypted using the public key of ASAA, KAsAA. This encrypted message 
is then sent back to ASAA. 
This message is encrypted with KAsAA to stop "insider attack" where a can 
be wire-tapping in order to obtain the attached cryptographic parameters. 
The cryptographic parameters are themselves encrypted with Ka to add 
another layer of protection. 
Note that this message is sent only when user a has been authenticated by 
the CAS. 

Message 4. ASAA -+ L: result (Plain-text) 
If after a time-out period Message 3 was not received by ASAA then user a is 
deemed to have failed the login authentication. Otherwise, if Message 3 was 
received and it decrypts successfully then user a is deemed to be authentic 
and allowed to logon. The result of the authentication, in the form of success 
or failure, is returned to the login process L. No cryptographic parameters 
are given to the users. This includes both the public system-key and user 
signatures. 

Note that, as we indicated earlier, users do not have access to the crypto­
graphic parameters. They are kept by users' local ASAs. When users logoff, their 
signatures will be destroyed by their local ASAs. 

5.3 Conference Authentication 

Setting up a Conference. The conference authentication scenario describes 
a conference situation among n users (participants) where all of them must 
be authenticated before the conference can begin. In the conference, there is an 
initiator of the conference who sends invitations to all potential participants. The 
invitees then decide whether to participate or not. If they do decide to participate 
then they send messages back to the initiator to indicate their willingness to 
participate in the conference. 

The messages exchanged for conference authentication are shown in Fig. 3. 
In the figure, a is assumed to be the initiator of the conference; b and c are the 
two conference participants; ASAA, ASAB, and ASAc are the local ASAs of 
Workstations A, B, and C, respectively. 

For this authentication scenario to occur, conference participants a, b and c 
must have completed the user login authentication. At the same time, ASAA, 
ASAB and ASAc must all possess the public system-key (g, N, R, Kp) and the 
appropriate signature of their individual clients. 

Note that this scenario does not involve the CAS. 

Message 1. a -+ ASAA : conf_name, invitees (Plain-text) 
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Workstation A 

Workstation C Worlcstation B 

Fig. 3. Conference Authentication. 

Client a starts an authenticated conference by sending a request to its local 
ASA, ASAA, with the name of the conference, conf_name, and a list of 
invitees, invitees, in this case, b and c. 
Invitees are designated by their login name. Domain names can also be at­
tached to it, e.g., mikew@vast.unsw.edu.au. The use of a login name provides 
location transparency for users requesting authentication. However, if nec­
essary, the authentication server will be provided with the exact locations of 
the invitees. 

Message 2. ASAA -+ ASAB: b, conf_invitation, KASAA (Plain-text) 
ASAA-> ASAc: c, conf_invitation, KASAA (Plain-text) 

ASAA sends the conference invitation to the local ASAs of the invitees, i.e., 
ASAB and ASAc. It also informs the other local ASAs of its public key, 
KAsAA. Note that although it is shown here that the message is delivered 
one by one to ASAB and ASAc, however, this message can be sent as a 
multicast to the appropriate ASAs, thus reducing the number of messages 
down to one. 

Message 3. ASAB -+ b: conf_invitation (Plain-text) 
ASAc -+ c: conf_invitation (Plain-text) 

ASAB and ASAc forward the conference invitation to the invitees b and c, 
respectively. 

Message 4. b ~ ASAB : a, conf_name (Plain-text) 
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c--+ ASAc : a, conf_name (Plain-text) 
Both b and c must decide whether to participate in the conference or not. If 
they decide not to then no messages are sent back to their local ASAs. Oth­
erwise, messages are sent back to their local ASAs indicating their intention 
to join the conference identified as conf_name. They obtain the details of the 
conf_name from the invitation, conf_invitation. 

Message 5. 
ASAB--+ ASAA: a, conf_name, KAsAB, (Xb, Yb)KAsAA, other_info 
{Plain-text and Encrypted) 
ASAc--+ ASAA: a, conf_name, KAsAa, (Xc, Yc)KAsAA, other_info 
(Plain-text and Encrypted) 
Both ASAB and ASAc send the join conference message on behalf on their 
clients to the local ASA of the conference initiator which is ASAA. ASAB 
and ASAc also inform ASAA of their public key. 
The (Xi, Y£) pair, where i is b or c, is defined in a way similar to that of 
ICKDS but with one added feature. In particular, a hash function value of a 
time-stamp and a message checksum is introduced into the definition of yt. 
xi and yt are defined as follows. 

Xi = g(Kp·p;) mod (N · R) 

yt = Si x g(C;·p;) mod (N · R) 

where Pi is a secret random number selected by the local ASAs of i. Pi has 
the property that it is co-prime to (R- 1) and Pi X Pi= 1 mod (R- 1). ci 
is a hash value such that: 

Ci = hash(Xi, TimeStamp, CheckSum). 

The use of a time-stamp is to avoid playback of messages. The checksum 
is included to allow detection of modification to the message during transit 
since it is transmitted in the clear, apart from the (Xi, Y£) pair. The signifi­
cance of the use of a hash function is that if the actual message was changed 
or the entire message was replayed then the receiver will calculate a different 
hash value. 
The (Xi, Y£) pair is encrypted with the public key of ASAA to avoid wire­
tappers from mounting a conspiracy attack as described in Section 4. 

Message 6. 
ASAA --+ ASAB : conf_name, participants, (Aab, Bab)KAsAB, other_info 
(Plain-text and Encrypted) 
ASAA --+ ASAc : conf_name, participants, (Aac, Bac)KAsAa, other_info 
(Plain-text and Encrypted) 
ASAA authenticates Message 5 based on the received (Xi, Y£) pair. This 
process is identical to that of ICKDS. If the messages are authentic then 
ASAA sends ASAB and ASAc a conference established message. 
The definition of (Aai, Bai), where i is b or c, is defined in a way similar to 
that ofiCKDS but again with the added feature. Thus, a hash function value 
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of a time-stamp and a message checksum is introduced into the definition 
of B 4 ;. The reason for adding them is the same as that described for the 
(X;, Yi) pair in Message 5. The (A4 ;,B4 ;) pair are defined as follows. 

Aai = Xfp·r,. (mod N · R) 

B . -S .xC,.;·r,. (modN·R) as- a t 

where Cai = hash(Aai, TimeStamp, CheckSum) and r 4 is a secret number 
picked randomly by ASAA. 

Message 7. ASAA --+a: conf_name, participants (Plain-text) 
ASAB --+ b: conf_name, participants (Plain-text) 
ASAc --+ c: conf_name, participants (Plain-text) 

ASAA after sending Message 6 sends the conference established message to 
the conference initiator a with the list of conference participants. 
Both ASAB and ASAc authenticate Message 6 in the same way as in 
ICKDS. If Message 6 is authentic the ASAB and ASAc notify their individ­
ual clients, b and c, that the conference identified by conf_name is established 
and also supply a list of participants of this conference. 

At the end of this exchange of messages all the ASAs can derive a common 
conference key, Kconf, from the exchanged cryptographic information, i.e., the 
(Xi, Y;) and (Aa;, Bai) values. ASAA can derive the conference key using the 
formula: 

where r 4 is a secret random number used by ASAA to generate the (A,B) values; 
and ASAB and ASAc can derive the conference key using the formula: 

Kconf =A~:~ mod R 

where i is b or c and fh is also a secret number such that p; x p; = 1 mod ( R- 1) 
with Pi being a secret random number used by ASA; to generate the (X;, l'i) 
values; p; is co-prime to (R- 1). 

Communications After Authentication. After the conference authentica­
tion process has been successfully performed all parti~ipants of the conference, 
including the initiator, can communicate directly with each other by using the 
new conference key, Kconf, described above. That is, after authentication, a, b 
and c can communicate directly without authentication via their local ASAs. 
Messages transmitted between them are of the form, £Kco,.1 (M), where M is the 
message and Kconf is their conference key. This communication is secure since 
only genuine parties have the correct encryption key. 
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5.4 One-way and Two-way Authentication 

In the case of one-way authentication the sending side generates the (X,Y) pair 
described under Message 5 of Section 5.3. An one-way authentication message 
is constructed based on the (X,Y) value and sent to the receiver. The receiver 
authenticates the message. This completes the one-way authentication. 

In the case of two-way authentication the sending side generates the (X,Y) 
pair described under Message 5 of Section 5.3. A two-way authentication message 
is constructed based on the (X,Y) value and sent to the receiver. The receiver side 
authenticates the message and if authentic it generates the (A,B) pair described 
under Message 6 of Section 5.3. A two-way authentication reply message is then 
constructed based on the (A,B) value and sent to the sender. This completes the 
two-way authentication. 

6 Current Status 

A prototype of the Authentication Server had been build on top of Unix. Work 
will be carried out in the near future to port it to RHO DOS. The implementation 
involved the writing of the Authentication Server itself and a client interface 
library for the Authentication Server. The Authentication Server can be started 
as either a CAS or an ASA. 

To generate the cryptographic information required for authentication a 
multi-precision math package was needed. Fortunately, we did not need to write 
this from scratch. The math package was kindly provided to us by Arjen Lenstra 
who also made some valuable suggestions in generating large prime numbers. 
This package was then extended to perform calculations required by the ICKDS 
scheme. 

The current implementation of the cryptographic parameters is such that 
they are not as strong as that recommended by Koyama and Ohta [K088b). 
They recommended using at least 256 bits for P and Q and 512 bits for R. The 
prototype only uses 60 bits for P, Q and R. This is a rather small size but it was 
done to allow ease of testing since it takes a long time just to generate the public 
and private system-keys: on a Sun 3/50 it takes 986.9 p.sec. of CPU time and 
16 minutes and 33 seconds of user time. Furthermore, the aim of the prototype 
was to study the feasibility of incorporating ICKDS into RHO DOS; the strength 
of the cryptographic parameters are of secondary consideration. The prototype, 
nevertheless, can readily generate cryptographic parameters in the recommended 
size by changing a couple of constant values in the server. 

Details of the implementation and the algorithms are described in [Wan92). 

6.1 Authentication Server Environment 

The testing of the Authentication Server prototype was done on top of Unix 
rather than RHODOS. The RHODOS Nucleus was replaced by Unix. The role 
of IPC Manager was simulated by using Unix Sockets (Too90). A pseudo Name 
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Server was written to support the functionality required by the Authentication 
Server. 

The emulation of the IPC Manager provided by Unix sockets is such that the 
latter can be readily replaced by the former without changing any code in the 
Authentication Server. This emulation provides the same interface as defined by 
the RHODOS IPC Manager. Thus, from the Authentication Server's perspective 
it is interacting with the IPC Manager. 

To illustrate the work of the Authentication Server we provide some snap­
shots of the Sun View3 windows used during testing. Figure 4 shows a typical 
view of the Sun Viw windows. The top-most two windows represent the logical 
workstation called Donald. The two windows in the next row represent the log­
ical workstation called Goofy. The two windows in the third row represents the 
logical workstation called Mickey. For each of the logical workstations, the win­
dow on the left is referred to as the user window and the window on the right is 
referred to as the server window. The left hand side window at the bottom row 
of Fig. 4 represents the pseudo Name Server. The window on its right represents 
the time-out process. This time-out process is used as a timer. When a timer runs 
out it sends a message to the initiating process. In the following description some 
particular notation is used to distinguish workstation names from user names. 
The name of a workstation is represented as Mickey. It has the feature of using 
a upper-case letter and in the italic style. The name of a user is represented as 
mickey. It has the feature of using a lower-case letter and in the serif font style. 

6.2 Testing Results 

In Fig. 4, the CAS is running on Mickey. In the user window of Mickey, a user 
named mickey has successfully logged in and is running the authentication test 
program. User goofy is logged in on workstation Goofy and is also running the 
authentication test program. The server window of Goofy shows its ASA has 
decrypted a message from the CAS with key "4f5e5e4c73495e4f''. Recall in Fig. 4 
the CAS is running on Mickey. Examining Mickey's server window one sees the 
top line says "Encrypting with key "4f5e5e4c73495e4f'' " which is the same key 
used by Goofy. This means user goofy has entered the correct password and 
its local ASA has passed the challenge from the CAS based on the supplied 
password. 

Looking at the server window of workstation Donald one observes its ASA 
decrypts a message from CAS with key "075e5d435849495e". Going back to 
Mickey's server window one sees the second last line says "Encrypting with key 
"Oe085d435849496b"" which is not the same key used by Donald's ASA. This 
implies user donald did not enter the correct password so Donald's ASA was 
not using the correct key for decryption. Hence Donald's ASA has failed the 
challenge from CAS. Therefore, user donald is denied of login. This is shown in 
Donald's user process window: the password used by donald is "donalddog". The 
correct password should be "donaldduck". 
3 Sun View is a registered trademark of Sun Microsystems, Incorporated. 
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Fig. 4. User Login Authentication -with donald failing to log in. 

Conference authentication is demonstrated in Fig. 5. In this figure, a con­
ference authentication request is made by user mickey who is known as the 
conference initiator. The conference name is "Conference 1" and user goofy and 
donald are the invitees. Looking at the user windows of Goofy and Donald one 
can see that both goofy and donald are prompted to join the conference initiated 
by mickey. They are told of the name of the conference, the name of the initiator 
and the names of other invitees. 

Suppose both goofy and donald decide to join the conference. Figure 6 shows 
the completion of conference authentication. Examining the user window of all 
three workstations one can see that all three users are informed of the names of 
the participants. Looking at their respective ASAs one can see that the confer­
ence key was also generated by each ASA and that they have the same key. In 
fact, if one looks closely at the server window of each of the workstations one can 
notice the cryptographic information (X,Y) and the (A,B) pair being generated 
by the Authentication Servers. 

A variation of an authenticated conference setup is shown in Fig. 7. In this 
figure, user goofy is initiating a conference named "Conference 2" and it is invit­
ing both mickey and donald. Looking at the user window of Mickey one can see 
that user mickey was late with its request to join the conference. This is indicated 
by the error message E_AS_CQNF..NF. To see the cause of the error message we 
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Fig. 5. User goofy and donald are invited to a conference. 

turn our attention to the server window of Mickey. This window shows a timeout 
message, M_TIMEOUT, was received. The reception of this messag~ indicates to the 
ASA that the waiting period for user mickey to request to join "Conference 2" 
has passed. The ASA can only assume mickey does not wish to join "Conference 
2" and thus removes all information related to "Conference 2". 

Notice also that a timeout message was received by Goofy's ASA. This time­
out is caused by the fact that Goofy's ASA was waiting for all the invitees to 
reply before proceeding with the next stage of the conference authentication 
operation. In this case, it was waiting for mickey to respond. 

7 Conclusion 

In this work we have designed, implemented and studied an Authentication 
Server for a distributed system, based on RHODOS. The server has demon­
strated its ability to carry out authentication op~rations that are capable of 
detecting active attacks and masquerade in a distributed system environment. 

One of the most significant results achieved is the ability of the Authenti­
cation Server to support conference authentication where all conference partic­
ipants are authenticated simultaneously and at the same time a conference key 
is distributed among all participants. This is achieved by use of an improved 
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Fig. 6. The completion of a conference authentication. 

version of ICKDS scheme. The implementation lies in the ability to detect re­
play of messages and at the same time allow client messages to be authenticated 
along with the authentication messages. The Authentication Server also supports 
client login authentication, one-way and two-way authentication. 

Location transparency of authentication clients is another note-worthy fea­
ture offered by the Authentication Server. Authentication messages can be de­
livered to the target user with the initiating user specifying only the login name 
of the target user and not its current location. This is achieved by the cooper­
ation between the Authentication Server, Name Server and the IPC Manager. 
This feature is particularly important to distributed systems since authentication 
clients may not always reside at a fixed location. 

The work carried out here provides a testbed for further experiments to test 
out different strategies, concepts and methodologies. This work has provided the 
impetus needed for further research in the area of authentication in distributed 
operating systems. 
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