
M2S: A Machine for Multilevel Security

Bruno d' AUSBOURG, Jean-Henri LLAREUS

CERT/ONERA
Departement d'Etudes et de Recherches en Informatique

2,avenue E.Belin
B.P.4025

31055 Toulouse Cedex France
email : { ausbourg,llareus }@tls-cs.cert.fr

Abstract. In this paper we describe the architeCture of a computer machine ensuring
a protection for data and processes of various classification levels, concurrently
running on behalf of various cleared users. The security, enforced by a hardware
security subsystem, is based on an internal information flow control that prevents
building any illicit channel. Mechanisms and services of standard operating systems
may be built on this machine. It permits also to build and manage multilevel data
structures and multilevel computations which are able to satisfy the highest security
requirements of new applications.

1 Introduction

It exists relatively numerous products and systems which are reputed to enforce
various security functions, and to rate levels defined in the Orange Book [5]. But they did
not succeed to convince potential users. Today, it clearly appears that only a high security
degree, based on strict control of access and a full control of the internal information
flows, can be able to allow computations for sensitive information.

In this paper, we describe the general architecture of a machine ensuring a
protection for data and processes of various classification levels concurrently running on
behalf of variously cleared users. This protection is exerted for both confidentiality and
integrity. The choices made for the architecture are founded on a precise and formal
definition of security considered through the use of security levels. The security properties
which outcome from this theory exert some constraints on levels and are enforced by a
security subsystem: its good functioning is sufficient to ensure the whole security. The
independence between the subsystem and the computing unit in the machine permits to
offer mechanisms and services of a standard operating system to the user, ensuring an
effective portability for existing applications.

A first section shows how the control of causal dependencies, by use of level
attributes, permits to ensure the whole system security. The second section exhibits the
main principles which outcome from this approach and have directly an influence upon
the definition and implementation of a security subsystem. The architecture satisfying
these principles is described in the third section. The fourth section exhibits some
principles in order to structure a such operating system taking account of this architecture.
The last section illustrates their application to a Unix system development through the

© Springer-Verlag Berlin Heidelberg 1992
Y. Deswarte et al. (eds.), Computer Security - ESORICS 92

374

description of implementation mechanisms for multi-level file systems and process
systems.

2 Related works

The earlier works on the first secure systems, as described in [11] and [10],
contributed to forge and then to implement the idea of a security kernel. In this approach,
the security is mainly based on the first theories of Bell and La Padula [3] and Biba [2]. It
stays entirely in the operating system area and this entails a great operating role for the
security kernel: it performs basic system operations on which it enforces the security
properties. The security kernel acts as a real operating subsystem in charge of preserving
the whole security and constitutes a system layer with its own services and interface. The
operating system, developed on this kernel basis, is in fact an other new layer with its own
services adapted to the security kernel interface and providing the user with a rarely
standard interface. To reach this goal, an other emulation layer becomes necessary, leading
to a complex system, with a high cost and poor performances [9].

The idea of making a distinction between the security, relying on hardware
mechanisms, and the operating system, appears with the SCOMP machine [7], the first AI
rated machine. The security still relies upon the Bell and La Padula definition and the
security subsystem masters internal information flows by enforcing some controls over the
management and the access to the memory segment descriptors stored in the MMU. This
realization lets some covert channels opened but attempts to reduce their capacity by
introducing noisy. This leads to decrease system performances. In addition, the developers
of this machine have not considered appropriate the use of a standard operating system as
Unix on a multi-level machine, so the given interface did not ensured a satisfying
portability of programs.

More recently, the Lock machine appeared [4] founded on the non-interference
model [8]. It is the most closest to M2S. The mains differences lie in the security
definition, in the kind of protection which follows from it and in the structure of the
resulting operating services.

3 Protection by levels

3.1 Control of causal dependencies

The aimed security is able to protect both confidentiality and integrity of data and
processes over the system. The formal definition given in [6] and [1] establishes, with
regard to confidentiality for example, that a system is secure if and only if the set of all the
objects that may be observed in the system by a subjects, O(s), is included in the set of
objects he has the right to observeR(s):

O(s) ~R(s) (1)
It is important to define O(s) very closely. If not, a subjects can observe some

object o not in O(s). This object o can be used by a trap or a Trojan horse to disclose any
secret information.

In fact, a user is able to perceive values of various objects inside the system. Some
of them may have a finer granularity than files. For example, a user can observe the status

375

value of processes, of data structures as a lock or a semaphore, of memory cells or of
registers inside a disk controller. He can also observe duration of operations as a disk
access, a memory access. Then he can observe the value of data at various given times,
and perceive dates of their changes. Therefore, what may be really observed in the system
is more than single objects, but points (object,time). Indeed, saying that a point (o,t) may
be observed by a subject s involves two kinds of possible observations which entail two
kinds of communication channels:

• the value of the object o at time t may be perceived, and a storage channel is
involved here;

• the time or date t at which the object o takes a given value may be perceived,
and a timing channel is involved here.

So, O(s) comprises points (o,t) that must be understood as values of objects oat a
given time t. Output objects may be directly observed by a user and then their associated
points (o,t) belong to O(s). These points are produced by computations from other points
reflecting the state of internal objects. These internal objects are themselves produced by
computations from input data. So, O(s) contains more than points that can be directly
observed: it contains also the points on which the points that may be directly observed
depend on. A precedence order on instants t defines as causal these dependencies in the
model.

r··i(ct)·-~F<i~i31~-~<~-:1-;)-~--~<b-:~)-~-~<d~t;>--~1<~:c:;ut)r;;;·i<~>-····l

''·······-~iir:~tifl~~-g:'f!otl~---'················!
Fig. 1 Causal dependencies inside a system

For instance, Fig. 1 describes a system with an output object o, whose value is
observed by a subject at time toutput· The value of this object o depends on previous values
of objects reflected by points (d,ts). (c,t4), (b,t2), (a,t1), and finally (i,ti) where i is an input
object and ti satisfies

toutput > ts > t4 > t2 > t1 > ti (2)

If the subject knows the internal system functioning, by observing o, he can deduce
values of intermediate points on which (o,t0 utput) is depending causally: (d,t5), (c,t4),
(b,t2), (a,t1), for example. So, he can deduce values of some input points (i,ti) in the
system. Then, it is possible for him to discover some input values which he would not
have the right to observe. Except if the system ensures that all these points contain no
sensitive information and are not computed from sensitive ones. In other words, a subject
perceives no sensitive information if the system ensures the condition expressed in (1).

376

In order to maintain the set of objects that a subjects can observe, 0(s), in its rights
R(s), it is necessary to control causal dependencies inside the system.

3.2 Protection by levels

The use of levels allows to ensure a good mastering of dependencies and of the
associated information flows inside the system. A security level (both in confidentiality
and integrity) is attributed to objects and subjects. A subj(iCt with a clearance levell(s) is
allowed to observe only system points (p,t) whose levellrJJ,t) satisfies:

l(p,t)~l(s) (3)
This inequality (3) must remain true for all points which are observable by the

subject inside the system. Taking back Fig. 1 , this condition leads to conclude that the
inequality (4) must be satisfied inside the system:

I(d)~ l(i,t;) ~ l(a,tJ) ~ l(bh) ~ l(d,ts) ~ l(o,t0 wpw) ~ l(s) (4)

In particular, it is forbidden for a point (d,t5) to causally depend on a point (x,t3)
with l(x,t3) ~ l(d,t5). Remember that this causal dependence could be:

• the value of object d at t5 depends on (x,t3);
• the value of time t5 at which the object d takes a particular value depends on

(x,t3).
This would enforce a potential information flow from the sensitive point (x,t3)

down to a not sensitive one (d,t5) and would be contrary to the definition of the security
previously given. In fact, it follows that point (o,toutput) depends on no sensitive point in
the system and its observation will reveal no sensitive information.

So, inequalities at system interfaces, as described in Fig. 1 can be enforced by
classical techniques of interface protection. The control of causal dependencies (including
its temporal aspects) allows to make sure productions and elementary transfers of
information until system points directly observed by a user. All information channels are
involved (storage and timing) and it exists no potential covert channel. Values of levels
constitute a public (not classified) information.

4 Architecture principles

This definition of security and of information flow control (by causal dependencies
controlling) has been interpreted and implemented in M2S. During developing, some
principles guided the choices made for the architecture.

4.1 SSS: Security SubSystem

The whole security relies only upon the good functioning of a subset of hardware
and software components constituting the Security SubSystem (SSS). This SSS manages
data and achieves necessary operations in order to maintain security properties all over the
system. This principle is similar to the TCB one expressed in [5]. In particular the SSS
conforms to the reference monitor properties: it cannot be bypassed and its integrity is
protected.

377

4.2 SSS in hardware layer

The flow control model can be interpreted in various system abstraction layers.
However, at a given layer N, specifications of operations inside layer N may verify
security properties issued from the model. But these N-operations rely on data and
functions specified at layer N-1.

11 trusted structure
---..... ~ controlled flow

E3J implementation structure
--------- ~"- illicit flow

Fig. 2 Introduction of illicit flows in a refinement structure

The layer N-1 specifications refine layer N specifications and introduce additional
operations and data structures that can be used to transfer information and build illicit
information flows.

A way to avoid difficulties related to refinement structures and illustrated by Fig. 2
consists in directly staying inside the hardware layer. This is possible because semantics of
security levels are sufficiently simple to be considered at this layer.

4.3 Level assignment

The used programming model is a classical one. It combines a processor P with an
address space A. P addresses A when it executes elementary transfers to external devices
(memory, registers of a device controller ...).

A

Fig. 3 Traditional programming model

The processor P, extended by buses, is an active entity and acts as a subject over the
system. Objects that can be observed are composed by the processor registers and the cells
of A. Objects values at various times are the points of the system. Levels are assigned to
the processor and the cells of A. Levels are themselves security objects. The processor
level determines the current level cl of the whole system. Levels divide A in various
partitions. Each partition may be reached by the processor according to the cl value, the
requested access mode and the rules of flow control.

378

4.4 Levels and control of elementary transfers

The state of the system is reflected by the status of processor registers, address,
data and control buses. Elementary transfers into the address space, or interrupt signals
travelling to the processor and carried up by the control bus constitute the internal flows of
information.

Fig. 4 Elementary transfer controls inside the system

So, controls executed by the SSS include two main modules. Each one is
implemented by making use of specific hardware components under control of a Security
Processor PS. This PS owns resources necessary to store and manage security data.

ACM: Access Control Module. This module inspects in real time the states of the address
and control buses and determines which states are allowed according to the security data
stored in SSS and according to the rules related to these transfers. The status of buses is
examined during each elementary cycle. In case of an illicit one, the cycle may be
interrupted by the PS which issues a Bus Error request destined to the processor P.

Briefly, at current level cl, a read (or write) cycle to an address of level n0 will be
allowed only if following conditions (4) (or (5)) are satisfied:

d~~ ~

dS~ ~
This module comprises an additional specific component in charge of verifying

some transfers whose addressing mode is more complex and uses transfers on the data
bus: for instance, access to disk data blocks.

ICM: Interrupt Control Module. This module acts as a filter for the interrupt signals
emitted by peripheral devices located in the address space. If the sender is an object at
level/0 , the interrupt signal is assigned a levelli = 10 • It is transmitted to the processor P
when the current level cl satisfies:

cl~li (7)
The interrupt signal is suspended until condition (7) becomes valid. In fact, in order

to handle this signal more easily, a stronger condition is waited for:

cl = li (8)

4.5 Management of level objects

Levels of the processor or of cells in A constitute objects in the system. Therefore,
a level is assigned to them. In a simplification way, this level is the minimal level, lmin· So,
the level of an object is a public information. Its modification is constrained by the flow

379

control rules. In particular, these rules ensure that the value of an object (o,t) can depend
only on informations contained in objects (o' ,t') such as

~~~~~ ~ 
When (o,t) is a level object, the property expressed by (9) requires (10) to be 

satisfied: 

lmin ~ l(o',l') (10) 
This means that the value of a level, at a given time t, must only depend on public 

information. This is possible only if, at a public level, a strategy is enforced to reserve 
resources in advance for classified levels. 

Modification of levels for cells in address space. Partitioning the address space is 
achieved at public level. Therefore it is possible to declare a space partition at a given 
level lp for a time t eventually infinite. This declaration enables the SSS to manage the 
corresponding level data and to ensure its coming back to the lmin value, after t. 

Such a backward is equivalent to a downgrading of the partition. So it is a 
constrained operation and the SSS is in charge of it. Flow control rules require the 
partition be cleared during this operation. So, the value of this partition at level/min• after 
downgrading, depends only on informations of level/min· 

Current level modification. Modifying the value of the current level consists in 
determining, at public level, different values for (cl,t) objects in the future. In other words, 
it's necessary to plan a temporal multiplexing for current level. The processor will adopt a 
functioning according to the Fig. 5 . 

level 

13 

?. ~in - ••••••••• 

ql q2 

Fig. 5 Current level temporal multiplexing 

The SSS allocates temporal quanta qi required for various levels. When, at a given 
timet, known at levellmin• the SSS modifies the current level cl, flow control constraints 
demand objects of processors (particularly registers) to be cleared when cl decreases. This 
forces the value of these object to depend only on information of levellmi11. 

5 M2S architecture 

5.1 General architecture 

The general architecture is defined by Fig. 6 . It is founded by insert of the SSS, 
driven by the Security Processor PS, a MC68010, in a bus cutting. This PS can be reached 
by the processing unit, a MC68020 processor, through the micro-machine and the 
available coprocessing interface. 



380 

•........................... 

Fig. 6 General architecture for the machine 

The SSS, under the control of a security processor, enforces the flow control rules 
and manages data. on which this control relies. It cannot be bypassed because it intercepts 
all the accesses executed by the processor to its resources. Moreover, data and security 
programs are located in a security space S separated from the processing unit area P. P can 
reach S only through the achievement of a coprocessing dialogue, fixed by micro-machine 
and mastered by the Security Processor PS. This ensures the integrity of the SSS. 

Three functional blocks are composing the SSS. They are discussed in the 
following paragraphs. 

5.2 Cooperation between SSS and processing unit 

The processing unit can reach the SSS space only by executing a coprocessing 
dialogue with the Security Processor PS. A cooperation logic, founded on a double access 
memory, permits data exchanges between both processing and security spaces. 

The processing unit is able to transmit request blocks to the SSS on order: 

• to retrieve security data; 
• to make reservations in advance for classified levels of resources. 

In all cases, the Security Processor stays mastering security data management: the 
processing unit has no possibility to retrieve or to falsify security information without the 
SSS knowing. 

5.3 Controls of elementary flows of information 

The functioning of any machine makes use of two kinds of internal elementary 
flows. First involves flows initiated by the processing unit when it does accesses to its own 
address space. ACM module attends to control these flows. Second kind involves flows 



381 

initiated by any hardware devices located in the address space when emitting interrupt 
signals to the processor. ICM module attends to control these internal flows. 

Controls of elementary accesses. The controls of an elementary access relies on a single 
comparison between the real state of the bus and a mask of allowed configurations for it. 
These masks are located in a double access memory. 

68020 Address and Control Bus 

cyf/Fnzrte Access Mask , • l Validity Test Logic J l ~ccess Authorization rror 

Access Mask 

Processor sub:SD.act: access rzghts fMULU) 
orocessor sub-snace acess control znmmtwn 

I ~WJ#Ts''{l;[erence _ 
Access.-
M.asks ~ 

.-Table - ~ccessM 
Double access rogra 

memory 

I Security Processor 

ifoartition access dUthorzzauon 
Read/Wr.ite access rtght 

IW access.1contral on partztwn n/UtJZtton 

Fig. 7 Hardware mechanisms for flow controls 

The address bits select an entry in a mask table according to the reached partition in 
the address space. A mask is a byte expressing the allowed access modes for the selected 
address. For instance: 

o access forbidden; 
o read and/or write access; 
o allowed access in all processor sub-spaces; 
o allowed access in only particular sub-spaces (Fe;). 

The value returned by the mask is compared to the real one found on the control 
bus. The PS computes masks according to the security data it knows (here levels) and 
control rules it is in charge of enforcing (here, flow control rules). 

The access control as described by Fig. 7 is exerted during each memory cycle. 
According to the result, the cycle may be carried on or interrupted. In this case, the 
elementary access control mechanisms interrupts the PS which in tum may interrupt the 
processing unit by initiating a Bus Error signal. 

The independence between the flow control devices and the rules establishing their 
good programming permit to have at one's disposal a mechanism able to enforce many 
other security policies than the single multi-level security. 

Interrupt signals controls.The second mechanism involves controlling the interrupt 
signals issued to the processing unit by cells in the address space. A single flip-flop 



382 

battery, programmed by the PS, enables interrupt requests by filtering them according to 
their level/i (equal to the emitting address space cell) and cl. 

Filter lets the interrupt requests carrying on only when /i = cl. In the opposite case, 
interrupt requests are retained until to be handled by the processing unit when allowed by 
cl. 

5.4 Trusted Paths 

It is necessary for the user to have at his disposal a trusted path to the SSS. This 
path may be used in order to exchange security data with the SSS. Mainly for: 

• his identification and his authentication; 
, • his session level reservation. 

User 

Fig. 8 Trusted path between SSS, user, and Security Administrator 

This trusted path is implemented in a Secure Device (SD) which is able to display 
messages from the SSS and to read security data given by the user. Directly connected to 
the SSS, it ensures the integrity of these security data and offers an extension of the SSS 
until the user. 

There is also a trusted Path directly between the SSS and the Security 
Administrator console which acts as an interface between them. The SA can exert security 
functions in order to enter or to modify security data. 

6 Structuring tools for a multi-level operating system 

6.1 Domains by use of levels 

The architecture discussed in § 5 defines a machine provided with domains which 
can enforce a confinement for data and processes. The use of levels, based on simple 
semantic concepts, in order to define these domains, permits the implementation of the 
SSS mechanism inside the hardware layer. The result is a machine provided with multi­
level domains. 

Therefore, every program, and particularly the operating system, running on the 
processing unit, is constrained by hardware controls. So, the operating system is in charge 
of managing resources and providing the user with an access interface to a new virtual 
machine distinguished by its ability to: 

• make partitions of resources by levels, including the processor resource; 
• enforce a strict flow control between these levels, including temporal flows. 

Taking account of these facts entails some principles that are convenient to apply 
when building an operating system this machine. 



383 

6.2 Multiplexing data structures according to levels 

The multilevel functioning mode of the machine enables all the mechanisms in 
charge of controls to enforce rules expressed in § 3 . Access to any data is constrained by 
these rules. Multiplexing data structures by levels allows to take account of this fact 
during the system development stages. 

Fig. 9 Multiplexing by levels a process table 

Fig. 9 illustrates how multiplexing a process table by levels. Data structure is split 
up in two components. One is located in a public memory part (Unclassified) and the other 
is located in a secret memory part (Secret). The structures of the two components are 
similar. Access is achieved through a multiplexing table indicating, for each active level, 
the base address of the corresponding level structure. 

This multiplexing organisation is founded on the hypothesis that levels are minimal 
level objects, lmin (here U). Such level data are managed at public level U. So, the 
existence and the address of secret data structures may be known at public level. 

At a given current level cl, only data structures at level cl are allowed to be 
managed. So, the only processes able to be scheduled at current level cl are cl processes. 

Therefore processes are submitted to a double scheduling strategy. First, the SSS 
allocates various current levels to the processor resource. These levels are active over the 
system for lengths of time previously established at public level. Then, for each current 
level, the operating system allocates the processor resource to ready processes that are 
managed inside the cl process table. 

6.3 Blindly writes 

The flow control rules allow some exchanges of data between levels. In the context 
of a multilevel operating system, it may be necessary, in order to achieve synchronisation 
and communication, to have any information sent from a levellinf to a levellsup:?: lin/that 
must be not observed. Two cases may occur. 

Write to a known destination address. That's a write operation into memory from a 
level lin/to a levellsup· It is allowed by flow controls and will not be interrupted by SSS. 
Typically, this procedure may answer a need to set flags in a data structure at levellsup· 

Complex operation to a data structure managed at lsup· In this case, the previous 
mechanism is unsatisfactory. Inserting an information inside the receiving data structure 



384 

implies a call to specific management functions related to this structure. This needs to 
access management data at levell8up. SSS will forbid such an access. 

However, a possible way in order to come back to the previous case consists in 
allowing level/sup to retrieve an information at level/info 

·r;-·r1le~@) 

Data structure 

Fig. 10 Writing into a levellaup data structure 

Inserting a /ilifdata into a I sup data structure can be carried out in four steps. 

• 1 Sender process P5 at level linf produces data to transmit and keeps it at 

@data· 
• 2 Sender process P5 signals receiver process Pr at level lsup eventually 

providing him with @data· 
• 3 Pr retrieves data at level lin/ 
• 4 Pr inserts data into the receiving data structure. 

This hardly constrained mechanism pennits to achieve the reservation of resources 
and the creation of objects at higher levels. 

6.4 Anticipating hardware controls 

The operating system is submitted to requirements of the hardware controls. In 
order to avoid to cause Bus Error signals related to security faults, it's necessary to take 
account of the hardware functioning inside system layers. 

So, the functioning rules enforced by the SSS may have any influence upon the 
structure of traditional algorithms in operating systems, causing some semantic 
modifications to them, due to their integration into a multi level environment. 

For instance, access to a file is generally carried out by the use of a descriptor desc 
kept in a memory descriptor table T desc· When closing this file, a function free_ desc 
allows freeing the entry allocated to desc in Tdesc and updates the descriptor upon disk. 

Fig. U Freeing a file descriptor in multi level mode 



385 

Assume the file is at levellmin• stored on disk at levellmin• the file descriptor desc 
inherits the file levellmin· Loading in memory and freeing the descriptor are achieved at 
the same level. Then, the operating functioning enforced by free _desc is a standard one. 

Assume now that flle reading is done at a given current level cl > lmin·Then 
descriptor desc will be read and loaded into descriptor table T desc of level cl. The call to 
free desc function will cause the T desc entry freeing. But the algorithm must inhibit the 
u{Xlite operation on disk because it would be blocked and interrupted by the SSS. 

Such an algorithm must reflect the following algorithmic structure: 
function free _desc (desc); 
begin 
if level( desc) ==current-level() then disk_write( desc); 
free_ Tdesc( desc); 
end; 

6.5 Specific functions for multilevel management 

Taking account of these mechanisms of partitioning by levels inside the operating 
system may be achieved by defmition of specific functions and primitives. Principally 
around three main points. 

Management of level data. A first set of functions must allow the operating system to 
acquire or, conversely, to request the modifications of security data, and particularly: level 
of users, current level, level of memory parts and level of peripheral devices. 

Management of multilevel resources. Partitioning the address space by levels is 
enforced by the SSS. This also can be done through the use of an operating system service. 
So, it's advisable to build commands and functions allowing to achieve it. Particularly 
providing functions enabling to do multilevel configuration of memory and configuration 
of a multilevel flle system. 

Management of multilevel data and processes. Semantics of traditional operating 
system primitives do not allow to make level breaking inside data structures and so, do not 
allow to build multilevel data structures. Then it's necessary to forge functions and 
primitives in order to be able, at level lin/' to create or to delete objects at level/sup ~ lin/" 
These operations concern the existence of objects and not their content. The existence 
(including its duration) is managed at level linf and depends only on information at level 
hnt· So, exerting these operations causes no information flow from levellsup to levellinf 

7 Application examples to the Unix operating system 

The operating system kernel developed for M2S at CERT/ONERA uses Unix 
mechanisms, data structure, and operating functions. It offers to the user a set of interface 
primitives with additional primitives answering needs expressed at § 6.5 . Their building 
is submitted to principles discussed in § 6 . We illustrate the use of these techniques 
within the context of two operations requiring multilevel data structures. These operations 
are in the area of the management of multilevel file systems and the multilevel 



386 

management of processes : creating a secret directory at public level and creating a secret 
process by a public process. 

In order to simplify, creating a classified data or process structure is achieved at 
public level. So, the only level breaking that may be built is (lmin-"l) with 1 >lmin· This is 
possible because the level of a level object is public. A feasible generalisation for these 
mechanisms would allow to build any kind of level breaking such as Ur-~12) with 11 < 12. 

7.1 Making a secret directory at a public current level 

The Unix file system structure is based on a tree-like organisation of directories 
and regular files. Each one is reached through a descriptor inode that contains 
management and implementation data for the referenced structure. The table of loaded 
inodes in memory reflects the reachable file system. This table permits to retrieve data 
blocks implementing files and directories, directories keeping the links of the global tree 
structure. 

data'/' 

data 'Dl0 ' 

data 'Fl0 ' 

Fig. 12 Logical structure of a public file system 

A structure as the one described in Fig. 12 can be extended in order to make a 
secret directory under the root, for example 028• Such an operation is based on the 
following techniques: 

• multiplexing data structures between levels U and S. 
• reservation of resources in advance and blindly writes; 
• use of a specific primitive: smkdir ( directory,level). 

Multiplexing by level the inode table splits it up into a secret memory area and a · 
public one. The public multiplexing table provides with addresses of tables on each level. 
The secret area and data structures related to it are managed at a secret current level. At 
public current level, the logical structure linked to the public subset of file system is nearly 
similar to the one described in Fig. 12. 

The main difference resides in the reservation of the 10 first entries in the inode 
table. They are reserved in order to achieve making secret level directories. The ten first 
secret inode entries correspond to a reservation area for public inode entries. This secret 
area is intended to be use for directories or files created at public level. 

At public level, achievement of primitive smkdir("D2s'' ,secret) causes the public 
inode table be searched for a free entry amongst the reserved ones for making secret 
directories. lnode 0 is found and initialized as a reservation inode for D28 directory. It 
contains management data related to this directory creation. Such a reservation inode 



387 

permits to know, at public level, the secret directory existence and the whole information 
related to its creation. Then a blindly write up to the corresponding entry in the secret 
inode table initializes it at a value reflecting the creation at public level. The algorithm of 
the smkdir primitive stops here. At this stage, the only existence of the D23 directory is 
known by both levels public and secret. 

Multilevel file 
system 

u 
~~~r:··----------···································i 

1' : Reserved for secret j
: . : \

9 :
10 i urr:cwiy : V

. L\, .. lL
U111 11

B d~ta '/' Drrectory ~ VL. o·
rile .

• .. II.. .
19

.
·~ -

!nodes Table data 'Dl0 '

c level

Fig. 13 Logical structure of a multi level file system

At secret level, the chosen option consists in achieving the secret data block
allocation and the full inode initialization when opening the secret level directory. This
operation calls the access function namei. This function searches the file tree structure for
the inode corresponding to a logical pathname. Finding the corresponding reservation
inode, it finds the inode as made from public level and allocates the secret data blocks.
Then, a classical directory management at secret current level allows to create a secret
subtree under secret root D23 • In particular, files F23 and F3s are made and managed in a
way in accordance with the one expressed by Fig. 12 .

Deleting D28 directory, as making it, modifies the public information of its
existence. This operation may be achieved at the only public level. It consists in freeing
the public reservation inode. The logical access path to the directory is then broken and the
directory is lost for all levels.

From an operational point of view, the user will have previously deleted, at secret
current level, the linked to D23 subtree. If not, secret data structures stay allocated though
logically unattainable. They will be freed when opening a new directory on this same
entry.

388

The achievement of such a level breaking in the file system remains a rare
operation. Its more realistic use consists in building great partitions inside the file tree
structure, each one used as a working area for each concerned level.

c=.:J Unclassifred

~--_ -_ ~ Confulential subtree
[""] Secret subtree

p~~l
-----~ J., -..... ~-..... ~-

~, •••••• T •• T ~
~ ·--~~~--j U.~~-~~.J

Fig.14 Multi level file system

An organisation as illustrated by Fig. 14 is founded on an equally multilevel
organisation for the disk file system. Briefly, it is based on the same multilevel
structuration principles. So, it provides with the ability to make a single file system,
ensuring a strict confinement for data amongst various levels. It provides also the ability to
implement objects composed by variously classified data: for example, multi level files.

This single file system is a main difference with data structures provided by the
Lock architecture [12]. In Lock/ix system, the multi level file system is based on the
management of several file systems, each one managed and implemented at a single level.
Moreover, this organisation is in a good accordance with non interference principle.

7.2 Creating a secret process at public current level

The use of the same techniques allows to introduce level breaks inside the tree
structure of processes. Fig. 15 illustrates how creating a secret process at public level by
the use of a forged primitive: sfork(level,duration). This primitive accepts a level
parameter and a length of time duration parameter that will be used by SSS in order to
reserve timing quanta for requested level.

Data structure multiplexing is applied to the process table that is located on both
levels, secret and public. Functions of memory reservation allow, at public level, to
reserve secret memory blocks. Allocating and freeing them is achieved by means of the
table planned for this use.

Creation at public level is based on the reservation of resources necessary to
achieve the secret process. This ability is provided by the availability of reserved entries in
process tables.

At public current level, during execution of the sfork primitive, a free entry in
process table is searched amongst the reserved ones to create secret processes. If one
exists, it is initialized with the whole data related to the process creation. A secret memory

389

area is also allocated in secret memory reserved at public level. A blindly copy is exerted
into it from memory space allocated to the creating process. Then a blindly write into the
corresponding entry in secret process table permits to describe its context, addresses of its
allocated memory space, and then to declare it in a "created at public lever' status.

Allocate.d fQr
secret tefet

Fig. 15 Creating a secret process at public level

So, when terminating the sfork execution, process existence and creation
conditions are known at public level. This process is provided with a length of time for its
life reserved and known at the same public level. Data needed for its management have
been transmitted to secret level. At secret current level, the scheduling task is able to
handle the newly initialised process table entry and to manage this process as a secret
process. In particular, it will be able to insert it into the ready process queue.

This process may use the exit primitive to terminate. Semantics of this primitive are
a little modified in order to take account flow control constraints. More precisely, when
the terminating process has been created at public level, no ending signal is emitted to its
father: this would be blocked by SSS.

That means a public process has at its disposal no information related to the
activity of its secret child. He only knows its existence for a length of time declared in
advance. This constraint about duration seems hard, but in fact, lengths of secret
processing are generally well known.

Then, at public level, the process is declared terminated at the end of the length
time initially declared for its life. Its public process table entry is made free as secret
memory previously allocated to it.

This ability to create processes of various levels is also a difference with abilities
provided by the Lock machine. In Lock/ix system, in accordance with non interference

390

principles, a subject must declare its session level and all processes belong to th-is single
processing level. There is no dynamic transfers of processes between levels.

8 Conclusion

The architecture of the machine M2S detailed in this paper and developed at
CERT/ONERA manages a unified structure for data and processes allowing them to
coexist at different sensitivity levels. The model to which we refer in order to define the
security is a causality model. The machine masters all causal dependencies (causality
dependencies = (functional + temporal) dependencies) by controlling all elementary
information flows. These last, enforced by the SSS, ensure there is not any covert channel
(neither storage, neither timing) which can be enforced inside the system.

This paper discussed the protection offered from the point of view of
confidentiality. The same level techniques are employed in the system to achieve an
efficient protection from the point of view of integrity. In fact, the enforced controls seem
rather hard for integrity. For instance, resource reservation requirements combined with
duration controls are not necessary involved in integrity protecting. Nevertheless, these
basic mechanisms ensure a confinement by level able to answer demanding needs for
integrity.

The whole security is inside and only inside the SSS. There is no trusted part of the
operating system needed for security reasons. The only constraint for it is to be adapted to
the new virtual machine offered by the SSS functioning. In particular, it must take
account of the separation and of the control of flows enforced by SSS in order to
implement multilevel data structures and multilevel operating services as multilevel file
systems, or multilevel files or multilevel process trees.

All standard mechanisms and functions of the Unix operating system (or any other
OS) can be built on this architecture. So, the portability of existing applications is
ensured. Moreover, mechanisms and functions are offered which permit to build other
multilevel services or data structures. For example, it is possible to build, on a same file
system, (and on a same disk partition) a multilevel file or directory tree, and also
multilevel files (ftles with data of various levels). It is also possible for a public process to
create a secret one. These dynamic breaks in levels are managed through the call of
particular primitives defined and implemented in such an order.

This approach is hardware dependant. Multilevel security has sufficiently poor
semantics to be interpreted in the hardware layer. This permits to obtain a very thin
granularity in the fiow controls that are enforced. And to avoid any illicit channel to be
used, because all flows can be exhaustively controlled. The evolution watched in the
processor architecture area incites to integrate, inside the same micro-machine, structures
for data and codes interpretation ensuring the management of information necessary to
enforce multi level security. This research goal would permit to obtain a new generation of
processors able to achieve the confinement done on the existing machine.

In such an hypothesis, security can be perceived no more as a constraining task
incumbent to the operating system, but as a structural feature the system has just to take
account.

391

9 References

1. Bieber, F. Cuppens and G. Eizenberg : Fondements theoriques de la Securite
Informatique. Rapport 2/3366.00/DERI, Centre d'Etudes et de Recherches de
Toulouse, 1990.

2. K. J. Biba: Integrity Considerations for Secure Computer Systems, Technical Report
ESD-TR-76-372, ESD/AFSC, Hanscom AFB, Bedford, Mass., 1977. Also MITRE
MTR-3153.

3. D.E. Bell, L.J. LaPadula: "Secure Computer Systems : Unified Exposition and
Multics Interpretation"- MTR-75-306, MITRE Corporation, Bedford, Mass, March
1975

4. J. M. Beckman, J.R. Leaman and O.S. Saydjari: LOCK trak: Navigating Uncharted
Space, IEEE Symposium on Security and Privacy, Oakland, 1989.

5. Trusted Computer Systems Evaluation Criteria. Technical report DoD 5200.28-STD,
National Computer Security Center, Fort Meade, MD, December 1985

6. G .Eizenberg: Mandatory policy: secure system model. In AFCET, editor, European
Workshop on Computer Security, Paris,1989.

7. L. J. Fraim: Scomp, a solution to the Multilevel Security Problem. In IEEE
Computer, July 1983.

8. J. Goguen and J. Meseguer: Unwiding and Inference Control. IEEE Symposium on
Security and Privacy, Oakland, 1984.

9. Panel SessionKemel Performance Issues, Proc. Symp. Security and Privacy, IEEE
Cat. No 81CH1629-5, Oakland, Calif.,1981.

10. E. J. McCauley and P. J. Drongowski: KSOS The Design of a Secure Operating
System, AFIPS Conf. Proc., Vol48, AFIPS Press, Montvale, N.J., 1979.

11. G. J. Popek: UCLA Secure Unix, AFIPS Conf. Proc., Vol. 48, 1979 NCC, AFIPS
Press, Montvale, N J ., 1979.

12. M. Schaffer and G. Walsh: LOCK/ix: On implementing Unix on the LOCK TCB,
11th NCSC Conference, 1988.

