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Abstract. A hardware implementation model is proposed that can be 
used in the design of stream ciphers, block ciphers and cryptographic 
hash functions. The cryptographic finite state machine (CFSM) model is 
no mathematical tool, but a set of criteria that have to be met by a real 
hardware finite state machine that will be used in the implementation of 
a cryptographic algorithm. Diffusion is studied by means of the diffusion 
graph and dependence matrix. For the study of confusion differential 
cryptanalysis is used. 
In the paper the design of a high-speed cryptographic coprocessor is pre­
sented called Subterranean. This coprocessor can be used for both cryp­
tographic pseudorandom sequence generation and cryptographic hash­
ing. It can be implemented in a straightforward way as (part of) a chip. 
The small gate-delay allows high clockfrequencies, and even a moderate 
estimation of 20 MHz leads to a (stream-)encryption speed of 0.3 Gbit/s 
and hashing speed of 0.6 Gbit/sec. 

Keywords: Hardware Cryptography, Stream Ciphers, Block Ciphers, Crypto­
graphic Hash Functions, Pseudorandom Sequence Generators. 

1 Introduction 

In this paper the design of high speed hardware oriented cryptographic algo­
rithms is addressed. The idea is that the algorithms make use of a finite state 
machine that will actually be built in hardware as a chip or part of a chip. This fi­
nite state machine must realize high diffusion and confusion. Because high speed 
applications are aimed at, the updating time of the finite state machine is consid­
ered the main limiting factor. Other obvious restrictions are circuit complexity, 
number of pins and on-chip memory. 

After the finite state machine model is given, it is shown how a block cipher, 
a hash function and a stream cipher can be defined in terms of it. For each case 
the required properties of the finite automaton are given and motivated. 

In Sect. 4 the diffusion graph and its dependence matrix are presented as 
useful tools to study the diffusion realized by the updating function. Section 
5 addresses the more complicated issue of confusion. For strong confusion the 
diffusion must be high, but this is not enough. Absence of (residual) algebraic 
structure and resistance against differential cryptanalysis are presented as the 
two basic requirements for strong confusion. 
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The presented approach is conceived for the design of hardware oriented cryp­
tographic algorithms. The tools that are applied encourage the use of symmetry 
and uniformity, leading to compact descriptions. We present a cryptographic 
coprocessor that can be used as a high-speed cryptographic pseudorandom se­
quence generator (CPRG) and cryptographic hash fu"uction (CHF). The ap­
proach can however also be used in the analysis of existing algorithms consisting 
of a number of equal rounds. 

This paper gives an outline of a number of different ideas, methods and their 
relations. Because of the space limitations no proofs are given and definitions 
are stated in an informal way. 

2 The Cryptographic Finite State Machine Model 
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Fig. 1. scheme of the cryptographic finite state machine model 

As can be seen in Fig. 1, the cryptographic finite state machine model( CFSM) 
consists of 4 basic components: the stateregister, the keyregister, the updating 
logic and the control- and load(CL) logic. The internal state, denoted by A, is 
an array of n statebits: aoa1 ... an_ 1 • The key, denoted by K, is an array of m 
keybits: kok1 ... km_ 1 . The internal state is said to be updated, if it is assigned a 
new value according to the updating function: At+l :::: F(At, Kt). This is called 
an updating operation, iteration or round of the CFSM. At+1 is the successor 
state of At. The function F can be seen as the juxtaposition of n component 
updating functions a:+ 1 = fi(At, Kt) realized by the updating logic. In practice 
the output of every f, always depends on only a subset of all bits of A and of K. 
These sets are called the input set and key input set off,. Whether an updating 
operation takes place or the internal registers are loaded is communicated by 
means of the CL logic. 
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The properties that are required from the CFSM depend on the type of 
algorithm for which it is used. In the following section it will be shown how three 
different cryptographic primitives can be implemented using a CFSM: stream 
ciphers, block ciphers and cryptographic hash functions. 

3 Building Algorithms with the CFSM Model 

3.1 Stream Ciphers 

There is a distinction between synchronous and self-synchronizing stream ci­
phers. Because of the specific requirements of an SSSC, application of the pro­
posed CFSM model would lead to a very inefficient design. The design of SSSC 
is treated in [7]. 

Synchronous stream ciphers are based on a cryptographically strong pseu­
dorandom bitstream generator (PRG). The CFSM model can easily be used to 
build a PRG. This can be seen in Fig. 2. The system is initialized by loading 
the Initial State into the stateregister and the Key into the keyregister. Each 
clockcycle k bits that are at specified positions of the stateregister are presented 
at the output as pseudorandom bits. 

Initial State 

D 
I<ey __.. 

Fig. 2. CFSM based pseudorandom bitstream generator 

k random bits 
(per iteration) 

Because this PRG is intended for cryptographic use, (even partial) recovery 
of the key or internal state must be computationally infeasible. More precisely, 
suppose a cryptanalist knows an indefinite number of output bits generated after 
a certain timet = r. Statebits that are unknown to the cryptanalist are referred 
to as private state bits. For this cryptanalist it must be computationally infeasible 
to perform one of the following tasks. 

- Knowing some or all bits of the internal state at a certain time t; with 
t; < r- p, gain any information about keybits or private statebits at t 2:: r. 
(p is a small integer depending on the actual PRG, typical p ~ log2 n ) 

- Knowing some or all keybits, gain any information about private statebits. 

In this context computationally infeasible must be interpreted as 'expectedly 
slower than exhaustively trying all unknown key-statebit combinations'. 
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l,From these two properties it follows that the security can be solely based 
upon the secrecy of the key, or solely upon the secrecy of the initial state. The 
former property allows for re-initialization in the clear between two users who 
share a secret key. 

The way these cryptographic properties are realized differs from the tradi­
tional approach using linear feedback shift registers(LFSR). In the CFSM ap­
proach, cryptanalysis must be prevented by the diffusion and confusion caused 
by the updating operation itself. 

Because practical PRGs always have a finite number of states, an initial state 
must always lead to a cycle. This cycle must have a large length to avoid repe­
titions in the output sequence. PRGs based on LFSR have the advantage that 
almost all internal states lie on one cycle, hence choosing the number of state bits 
large enough solves this problem. For PRGs based on the CFSM model the cycle 
length depends on the initial state and the key. It is hard to predict the cycle 
length in individual cases. However, if the mapping realized by A' = F(A, K) 
with a constant key K can be considered a random permutation, the cycle length 
has a flat probability distribution [2]. With this distribution, the expected cycle 
length is 2n - 1 and the probability to choose an initial state with a cycle shorter 
than o: is o:j2n(n is the number of statebits). For non-invertible updating func­
tions, the expected cycle length is always shorter. Hence the updating function 
should be constructed that it is invertible with respect to the internal state for 
each key. In the following this property will be called 'state-invertibility'. The 
high diffusion and confusion inherent to a 'good' updating function justify the 
randomness assumption. 

Intuitively the influence of the key on the updating function should be as 
great as possible. This is realized if the updating of a state A with two dif­
ferent keys K 1 and K2 never gives rise to the same state. More formally VA : 
F(A, Kt) = F(A, K 2) ::::> !{1 = K 2 . This is equivalent to the statement that the 
function A' = F(A, I<) with J{ considered to be the input and A a constant is 
an injection. This implies m :5 n. In the following this property will be called 
'key-injectivity'. 

3.2 Block Ciphers 

Figure 3 shows how an iterated block cipher can be built around a CFSM. The 
system is initialized by loading the Plaintext into the stateregister. Subsequently 
the CFSM is iterated a specified number of times s. During the iterations the 
keyregister is updated according to a key schedule, realized by an external (to 
the CFSM) module that contains the Key. It is however also conceivable to have 
a block cipher with no key schedule. In this case the Key is loaded directly 
into the keyregister. After the s iterations, the internal state is output as the 
Ciphertext. 

This block cipher must be resistant to cryptanalysis. Suppose a cryptanalist 
is able to obtain from a black box the ciphertexts corresponding to an indefinite 
number of (adaptively) chosen plaintext blocks and vice versa. These ciphertext 
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Fig. 3. CFSM based block cipher 
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Plaintext 

D 
Ciphertext 
(after s iterations) 

and plaintext blocks are referred to as 'known'. We say the block cipher is re­
sistant to cryptanalysis if it is computationally infeasible for this cryptanalist 
to obtain any non-trivial information about the key or plain texts ( ciphertexts) 
corresponding to unknown ciphertext(plaintext) blocks. By trivial information 
is meant exclusion of 'known' plaintext blocks as candidates for decryptions of 
'unknown' ciphertext blocks and vice versa. 

For decryption of the ciphertext back to the plaintext to be possible, the 
updating function must obviously be state-invertible. Moreover, to guarantee the 
diffusion and confusion of the round-keys, key-injectivity is a desirable property. 

For decryption to be practical, the function A = F- 1(A1
, K) must be easily 

implementable using a CFSM with complexity comparable to that of the CFSM 
realizing the forward updating function. This restriction was not present with 
stream ciphers. Preferentially both F and F- 1 can be realized by the same CFSM. 

3.3 Hash Functions 

The construction of a cryptographic hash function in terms of a CFSM is de­
picted in Fig. 4. The system is initialized by loading the specified Initial Value 
into the stateregister. Subsequently the CFSM is iterated while the keyregister 
is loaded with bits coming from an external module that takes care of bit selec­
tion and message padding. The number of iterations depends on the length of 
the message and the bit selection scheme. After the last iteration (part of) the 
internal state is output as the Hash Result. 

If this hash function is to be used for cryptographic purposes it must be 
collision free. This means that finding two different messages M 1 and M 2 that 
have the same hash result would require a computational effort of the order of 
2n/ 2 applications of the hash function. 

The bit selection and key loading mechanism is an essential part of the hash 
function. Each messagebit should appear several times in the keyregister during 
the hashing process. In this way the content of the keyregister during a specific 
iteration can not be chosen without affecting it during other iterations. State­
invertibility of F is a desirable property because it assures that there are no 
intermediate hash results that have the same successor state with the same 
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Initial Value 

N-bit Message Hash Result 

~ D (after g(N) iterations) 

bit selection -+-

Fig. 4. CFSM based cryptographic hash function 

key. Key-injectivity is desirable because it guarantees the dependence of the 
intermediate hash result on the selected messagebits. 

3.4 The CFSM Model Revisited 

Because state-invertibility and key-injectivity of the updating function are ad­
vantageous in all three cases, we incorporate these properties in our CFSM 
model. 

In case the CFSM is used as a stream cipher or a block cipher without key 
schedule, the content of the keyregister is fixed during the iterations. If a block 
cipher with key schedule or a hash function are implemented, new bits are loaded 
into the keyregister in between the iterations. These will be called respectively 
fixed key and variable key applications. 

4 Diffusion 

Diffusion is the term introduced by C. Shannon [1] to denote the quantitative 
aspect of information propagation. In this section the diffusion in the internal 
state caused by CFSM iteration is addressed. A useful tool in this study is the 
diffusion graph and equivalently the dependence matrix. 

4.1 Definitions 

A diffusion graph is a weighed directed graph that is associated with a given 
updating function and key. Each statebit ai is represented by a node (vertex) i. 
There is a directed edge from ito j if ai belongs to the input set offj(A, K). The 
weight 0 < Wij ~ 1 of this edge is given by the probability that complementing 
only bit ai before updating will cause bit ai to complement after updating. The 
dependence matrix is the n x n-matrix with element Wij in row i and column j 
and 0 if there is no edge from i to j. If a state A is interpreted as an n-bit binary 
number and bitwise EXOR is denoted by EB we have 

Wij = 2-n L fj(A, I<)$ fj(A $ 2i 1 K) 
A 
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;,From the definition it is clear that the diffusion graph depends on the particular 
value of the key. This complicates the analysis of multiple round diffusion in a 
variable key application. Moreover, our goal is the design of an updating function 
that realizes very high diffusion after successive iterations for all possible keys. 
Therefore in the following only updating functions are considered where the 
diffusion graph is independent of the key. This can be realized by imposing 
certain restrictions on the key-injection. 

4.2 Single Iteration Properties 

The diffusion graph can be used to get an idea of local and global diffusion. The 
sum of the weights of the edges that start from node i can be considered the 
diffusion from bit a; caused by updating. It is the expected Hamming distance 
between the two successor states oftwo states that differ only in a;. The sum of 
the weights of the edges that arrive in a node i can be considered the diffusion to 
bit a; caused by updating. It is a measure for the diffusion caused by the binary 
function qA, K). The sum of the weights of all edges in the graph, divided by 
the number of nodes, is a measure for the average diffusion per bit. This number 
is called the diffusion factor VF of the updating function. We would like this 
factor to be maximum under the given constraints. 

The number of edges arriving in a node i is equal to the cardinality of the 
input set off;(A, K). Hence the diffusion is limited by the number of arguments 
of the f;. Equivalently, the diffusion is limited by the number of different input 
sets a; belongs to. The contribution of an edge to the total diffusion is propor­
tional to its weight. If Wij = 1 bit aj depends on a; in a linear way, thereby 
realizing unconditional propagation. Given the topology of the diffusion graph, 
the diffusion can be maximized by choosing all weights equal to 1. However, this 
implies a completely linear updating function and strong confusion demands the 
presence of nonlinearity. Hence there must always be a substantial number of 
Wij < 1. The diffusion graph with only the edges drawn with weight 1 reveals 
the part of the diffusion that is certified. This so called linear suograph provides 
a skeleton for the information propagation. 

Because the CFSM has to be used in high speed applications, the updating 
speed is important. While this speed is limited by the component updating 
function that has the largest gate delay, every f; contributes to the diffusion. 
Hence once the updating speed has been fixed, it will be advantageous for the 
diffusion to design the f; as complex as possible within the given timing and area 
constraints. Obviously this will cause all fi to have comparable complexity. 

4.3 Multiple Iteration Properties 

In this subsection the diffusion caused by several consecutive iterations is treated. 
This can readily be investigated with the diffusion graph. A statebit ai at time 
t = k depends on statebit a; at time t = 0 if there is a path of length k from 
node i to node j. There can be multiple paths of length k from i to j. This 
k-round dependence can be depicted in a k-round diffusion graph. Calculation 
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of the weights of the edges of this graph requires in general reconstruction of 

the iterated function. This is only feasible for small k and relatively simple 

fundions. Moreover, the simultaneous occurrence of nonlinearity and multiple 
paths introduces key dependence into the graph. 

Our goal is to maximize the k-round diffusion for k = 2, 3, .... For k = 2, 
bit ai at t = 2 written in terms of state bits at t = 0 gives 

a~'= fi(aj, a~, ... , a~, K') = fi(fj(A, K), fk(A, K), ... , fp(A, K), K') . 

If the input sets offj,fk, ... ,fp don't overlap, ai' depends on the maximum 

number of statebits possible. This is equivalent to saying that there are no mul­

tiple length-2 paths from any node to node i. If this holds for all nodes, the 

updating function is said to be {2)-matched. In this case the weights of the 2-

round diffusion graph can be calculated easily by multiplication. Moreover, if 

the component updating functions are mutually similar, it can easily be shown 

that the 2-round diffusion is maximized. This can easily be extended to 3 (or 

more) rounds by considering paths of length 3. Consider a CFSM with mutually 

similar fi and diffusion factor Vp = a. If it is matched its 2-round diffusion 

factor will be a 2
, its 3-round a 3 ... Hence for a matched updating function the 

k-round diffusion factor grows exponential ink for small enough k. For larger k 
the diffusion factor stabilizes around n/2. 

In all algorithms, the diffusion and confusion of the keybits into the internal 

state is essential for the cryptographic security. After the first iteration the de­

pendence of the internal state on the key is assured by the key-injectivity. During 

the following iterations the keybits are diffused over the state by the updating 

function. In fixed key applications the same keybits enter the updating function 

again every new iteration. In variable key applications some new bits are intro­

duced in the keyregister every iteration. Using the diffusion graph, weaknesses 

in the key schedule and message bit selection can be found easily. 

5 Confusion 

Even more important than high diffusion is strong confusion. The term confusion 

was introduced by C. Shannon [1] to denote a qualitative aspect of information 

propagation. Strong confusion corresponds to involved and complicated depen­

dencies, weak confusion to simple dependencies. The cryptographic strength of 

all cryptographic algorithms is ultimately based on the presence of strong con­

fusion. 
The problem with studying confusion is that the apparent complexity of a 

function depends on the point of view. For instance, linear modular arithmetic 

looks very complicated if studied at the bit level. Hence a function that appar­

ently realizes complex dependencies may have a simple form if looked at from 

another angle. Every discrete function can be expressed at the bit level. Higher 

levels of description usually require certain algebraic properties. We believe the 

probability that there are 'simpler' ways of describing an iterated function can 

be minimized by designing the function at the lowest level possible: the bit-level. 
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This means that in practice the building blocks of a CFSM updating function 
can be limited to logical gates, small look-up tables and bit-permutations. 

Two necessary properties for the realization of strong confusion are high dif­
fusion and nonlinearity. It is not immediately clear how this nonlinearity should 
be realized. However, if the updating function is designed at the bit-level and 
has no higher algebraic structure, there exists an excellent set of tools to investi­
gate the confusion. By this set we mean differential cryptanalysis [3]. The most 
important criterion for good diffusion is the absence of high probability multiple 
(updating function) round characteristics. 

If the CFSM is used as a PRG, a number of statebits are presented at the 
output after every iteration. The positions of these state bits should be carefully 
chosen to minimize the correlation between the output bits. If there are no high 
probability multiple round characteristics, partial knowledge of the state at a 
certain time is of no use after some iterations. 

In all three CFSM applications, the confusion of the keybits is essential. To 
prevent recovery or manipulation of part of the key in variable key applications, 
every key bit (or messagebit) must reside in the keyregister for several iterations. 
The confusion of the keybits is then guaranteed by the property ofkey-injectivity 
and the strong confusion caused by the updating function. 

6 Subterranean: A High Speed Cryptographic 
Coprocessor 

A cryptographic coprocessor design is presented that can be used as a pseudo­
random bit generator and a hash function, respectively called Substream and 
Subhash. Subhash is related to the function Cellhash that was presented at 
Asiacrypt '91 [6]. With respect to Cellhash the updating function is modified 
to optimize the resistance against differential cryptanalysis without. augmenting 
the circuit complexity. In Cellhash the hash result was obtained by reading the 
internal state after a number of iterations. Because the possibility of reading 
the internal state would compromise the security of Substream, this has been 
avoided in Subhash. 

Substream and Subhash are powerful primitives in the realization of com­
puter security. A CPRG can be used for confidentiality of stored or transmitted 
data by stream encryption [4]. A CHF is an indispensable component of practical 
data integrity, authentication and digital signature schemes [4, 5]. Moreover, the 
security of many cryptographic protocols depends on a CHF and unpredictable 
random bits that can be produced by a CPRG [4]. In the providing of security 
services, all bulk operations on large variable-length files, namely encryption and 
hashing, can be performed by the proposed coprocessor. 

6.1 The Design Approach 

In this section we give the design approach taken to realize the proposed CFSM. 
The basic idea behind it is simplicity. By introducing uniformity and symme-
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try in the updating function, the analysis of diffusion and confusion is greatly 
simplified. Moreover, the resulting hardware description is short and elegant. 

The updating function is defined as the composition of a number of subse­
quent transformations that treat the statebits in the most uniform and symmet­
ric way possible. Each transformation takes care of a required property of the 
updating function. There are essentially four different transformations: 

Nonlinearity: a 'local' nonlinear operation. The uniformity demands that 
every statebit enters at least one nonlinear function. 

- Diffusion: a 'local' linear operation. The linearity of this transformation 
gives a certified diffusion. 
Dispersion: a bit permutation that moves statebits that depend on over­
lapping sets of input bits away from each other to accomplish matching. 
Key Injection: m statebits are each EXORed with a different keybit. This 
guarantees key-injectivity. 

The first three transformations have to be invertible to guarantee state­
invertibility. In variable key applications the key load mechanism is an important 
part of the algorithm and has to be properly defined. 

6.2 Specification of the Internal Functions 

The operation of the Coprocessor is given by the calculation of next states At+1 

and Kt+l and output zt from At, Kt and the input Bt. For both registers there 
are options, indicated by means of the control logic. For the internal state there 
are 3 options : reset (to the all-0 state), hold and update. For the key there 
are 2 options : hold and load. Every iteration a 16-bit value Z is presented at 
the output. We will now specify the updating, loading and output functions in 
detail. 

The updating function At+1 = Fs(At, Kt) can be considered as a 5-step 
transformation of the internal state A. In the following, all indices should be 
taken modulo 257, V means OR and El7 means EXOR. 

Step 1 : 
Step 2: 
Step 3 : 
Step 4: 
Step 5: 

ai == ai EB (ai+l V iii+2), 
a0 == iio 
a; == ai EB ai+3 EB ai+s, 
ai == ai EB ki-1, 
a; == a12*i, 

0 :S i < 257 

0 :S i < 257 
1 :S i < 257 
0 ~ i < 257 

Figure 5 clarifies how the five steps of F 8 contribute to the calculation of one 
statebit. Step 1 is a nonlinear cellular automaton (CA) operation where each 
bitvalue a; is updated according to the bitvalues in its neighborhood (in this step 
and step 3 periodic boundary conditions apply). This particular CA operation 
is invertible if the length of A is odd. Step 2 consists merely of complementing 
1 bit to eliminate circular symmetry in case all statebits are 0. Step 3 is a linear 
CA operation. This step is invertible if the length of A is no multiple of 7 or 31. 
In step 4 the actual keybits are injected in A. Step 5 is a bit permutation where 
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bits are placed away from their previous neighbors. The length of A is 257 (a 
prime) to make step 1 and 3 invertible and to avoid circular symmetric patterns 
in A. 

step 1 

step 2 

step 3 

krs step 4 

step 5 

t+l 

Fig. 5. schematic overview of the calculation of one output bit using the F s function. 
It clearly shows tha.t each output bit depends on 9 input bits and that nearby output 
bits depend on non-overlapping sets of input bits. 

The updating function is invertible with respect to the state. For a fixed key, 
every state has exactly one predecessor. However, this inverse function is very 
hard to implement both in hardware and software. 

In the key load option 32 bits are loaded into the keyregister in parallel. If a 
32-bit word B = bob1 ... b31 is loaded at time t we have 

for 0 ~ i < 32 and for 32 ~ i < 256 

The 16 output bits zoz1 ... z15 at timet are taken from the internal state At. 
The indices of the used statebits are given by 

(11,24,37,48,60,73,84,98,117,130,143,154,168,200,235,249) 

These positions have been chosen such that: 

- No bit of zt depends on bits of zt- 1 through F •. 
- Output bits zt depend on non-overlapping sets of bits of At- 1 . 

- No bit of At depends on more than one bit of zt- 1 through F •. 

6.3 Diffusion 

In this subsection the diffusion resulting from applying the updating function to 
the internal state is studied. 
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A bit of At depends on 9 bits of its predecessor state At-1 . More precisely 

the bit a~ depends on ai;!i+k 'with k E n = {p I 0 ::::; p < 6 or 8 ::::; p < 11}. This 
can be checked by explicitly combining all five steps of F • and is illustrated in 

Fig. 5 for bit a92. By recursively applying this the diffusion of multiple iterations 

can be studied: a~ depends on a~;?( 12•Hk)+L with k,f En. Hence every bit of At 

depends on 81 bits of At-2 • After three iterations the dependence is complete, 
i.e. a statebit at timet depends on all bits of N-3 . Alternatively a bit of At 
affects 9 bits of At+l, 81 bits of At+2 and all bits of AH3 . The updating function 

has Dy = 6 and is 2-matched. 

6.4 Confusion 

In differential cryptanalysis the propagation of differences in the input to inter­
mediate values is studied [3]. Suppose we have two different internal states A 
and A* and their difference is defined by the bitwise EXOR: A'= A (f) A*. 

An n-round characteristic is given by an initial EXOR A'0 , intermediate 

EXORs A'i and terminal EXOR Am. The probability of this characteristic is 

the probability that two internal states A0 and A*0 with A'0 = A0 EB A*0 give 

rise to the specified succession of EXORs. The importance of a characteristic in 

differential cryptanalysis is proportional to its probability. 
For the analysis we split the function F s in the nonlinear step 1 and the linear 

steps 2-5. The result after performing step 1 on A ( *) is called B( *). The result of 

performing steps 2-5 on B< *) is called C( *). It is assumed that the key is equal 

in the two cases. We will first study the propagation of differences during the 

first step. 
If the local rule of step 1 is rewritten with+ denoting EXOR and concatena­

tion denoting AND a bit of B(*) is obtained by b~*) = 1 +a~*) +a~*) +a~*) a~*) , • • •+2 •+1 •+2. 
For the bits of B' we have 

(1) 

For a given input difference the a~ are fixed and the a; are variables. From (1) it 

can be seen that b~ depends in a linear way on bits of A. For a given A' the values 

of B' can be expressed in terms of A-bits by a vector equation B' = M A+ I<. 
Here M and J{ are respectively a matrix and a vector fixed by the value of A'. If 
r is the rank of this matrix (of A'), the number of possible B'-configurations is 
2r, each appearing with probability 2-r. The tank M is equal to the number of 

linearly independent equations in bits of A. Using (1) it can easily be shown that 

r is equal to the number of 1-bits plus the number of 001-patterns in A'. Hence 

the probabilities of the output differences are only large for input differences 

with small Hamming weight. 
The difference C' obtained after performing steps 2-5 to B and B* can be 

calculated using only B'. This is due to the linearity of step 2-5. Hence for a 
given B' there is only one C', obviously with probability 1. The contribution of 
steps 2-5 to the confusion becomes clear only when characteristics over multiple 

iterations (rounds) are considered. 
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In practice, the bits of the intermediate states that are relevant for a certain 
characteristic can be considered as independent. In this case the probability P 
of an n-round characteristic is given by 

log2 P = - 2:::: ri 

O$i<n 

(2) 

with ri the rank associated with intermediate difference A'i. Hence the most 
probable n-round characteristic will be the one with a minimum number of 
1 and 001 patterns in the intermediate EXORs A'0 to Am-l. Using (2) and 
the uniform ( and circular symmetric) behaviour of the updating function with 
respect to EXOR propagation, upper limits for these probabilities are easily 
found. Moreover, for small n the range of essentially different candidate high­
probability characteristics can be restricted enough to allow exhaustive search 
over the remaining possibilities in reasonable time. 

Table 1 lists the probabilities and initial EXORs A0' of 1- to 5-round char­
acteristics with maximum probability for the Cellhash round function and for 
Subterranean. We believe that the sharp decrease of the probabilities for growing 
n is an indication that calculations involving bits from internal states separated 
by several iterations become extremely complicated even if a small (say 8) num­
ber of iterations are considered. This sharp decrease is caused by the certified 
diffusion mainly due to (the linear) steps 3 and 5 of F8 • 

n Cellhash Subterranean 

1 z-2 z-2 
2 z-8 z-s 
3 2-20 2-2s 

4 2-46 2-68 
5 2-96 2-1s4 

Table 1. the highest probabilities of characteristics for a small number of rounds 

6.5 Substream 

In Substream mode the Cryptographic Coprocessor is initialized by fixing the 
Initial State and the Key. This takes 16 input words (of 32 bits) and 16 clock­
cycles. This can be expressed in a sequence diagram: 



Clock cycle 
t = 0 
t = 1. .. ,7 
t = 8 
t = 9 ... ,15 

Internal State 
O(reset) 
-{hold) 
Fs{Update) 
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Key Load 
It(load) 
It 
Kt-s 
Kt-s 

Output 

After initialization 16 random bits ror1 ..• r 15 are presented at the output 
per iteration and the key is not changed: 

Clockcycle Internal State Key Load Output 
t > 16 -(hold) 

It is claimed that Substream meets the cryptographic criteria stated in Sect. 
3.1 with p = 8. The expected cycle length is 2256 and the probability to choose 
an initial state with a cycle shorter than o: is o:/2257 . 

We would like to stress that no absolute proof of security can be given for 
any practical cryptographic algorithm. However, in the following paragraph we 
will give the line of reasoning that has lead to the cryptographic claims. 

If the key is known, cryptanalysis boils down to total reconstruction of the 
internal state at a certain time (say At0 ). Partial reconstruction of the internal 
state at a certain time is of little value because of the high diffusion and confusion 
caused by updating. In a known plaintext attack the cryptanalist is provided with 
16 bits per iteration. Hence the statebits that are used in the calculation of Ato 
must originate from at least 17 different iterations. If both the key and the state 
are unknown to the cryptanalist, statebits from at least 33 different iterations 
are needed. The claimed cryptographic security of Substream is based on the 
infeasibility of calculations involving statebits separated by multiple iterations. 

6.6 Subhash 

The system is initialized by resetting the internal state and making sure that the 
keyregister contains only O-bits. The (padded) message is loaded into the keyreg­
ister 32 bits at a time while the finite state machine is iterated. After loading 
all messagewords 24 more iterations are performed. During these iterations all-0 
words are loaded into the keyregister. The Hash Result is given by the words Z 
output during the last 16 iterations. 

Suppose we want to calculate the hash result Hs of a b-bit message using 
Subhash. Here b may be any integer. Before hashing, the message has to be 
padded so that its length is a multiple of 32. 
Padding of the message 
The message is extended with a number p of O-bits so that its length in bits is 
a multiple of 32 and 0 ~ p < 32. Subsequently the message is extended with 
a 32-bit word representing the value 232 - 1 - p, most significant bit first. The 
resulting message can be written as M 0M 1 ... MN-l, i.e. the concatenation of N 
(32-bit) words Mi. 



The hashing process 

Clockcycle 
t = -7 ... ' -1 

t = 0 
t=l. .. ,N-1 
t = N ... , N+7 
t = N+B ... , N+23 

Internal State 

O(reset) 
Fs 
Fs 
Fs 
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Key Load 
(load) 0 
Mt 
Mt 
0 
0 

The Hash Result is defined by HoH1 .. . Hl5· 

Output 

Ht-CN+s) = zt 

The claimed cryptographic security of Subhash is based on the fact that 
every messagebit is injected into the state 8 times during the hashing process, 
realizing very strong confusion. 

6. 7 Practical Considerations 

The clock frequency is limited by the gate-delay of the updating function. This 
is equal to the sum of the gate-delays of one NAND, and three EXOR.s. An 
estimation of 20 MHz leads to a (stream-)encryption speed of 0.3 Gbitjs and 
hashing speed of 0.6 Gbitjsec. 

The interface of the finite state machine to the outside world is formed by 
a 32-bit bus and the control connections. The key and internal state cannot be 
read from the outside. 

In Substream mode, a new key is loaded only rarely. It must be possible to 
use the same key for a long time. For some applications an on-chip key memory 
(EPROM, EEPROM, ... ) that can store a few (1 to 16) keys would be desirable. 

At the moment we are investigating the implementation of the proposed 
cryptographic coprocessor in collaboration with IMEC (Interuniversitair Micro 
Electronica Centrum). 

7 Conclusions 

The design of conventional cryptographic algorithms is studied from an engi­
neering point of view. A cryptographic finite state machine model is introduced 
that can be used at the core of stream ciphers, block ciphers and hash functions. 
The design of such a finite state machine is considered as an optimization of the 
updating function with respect to diffusion and confusion within certain circuit 
complexity and speed constraints. 

A cryptographic finite state machine is presented that can be used for hashing 
and stream encryption, both in the Gbitjsec. range. 
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