
A Hardware Design Model for Cryptographic
Algorithms

Joan Daemen, Rene Govaerts and Joos Vandewalle

Katholieke Universiteit Leuven, Laboratorium ESAT
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

Abstract. A hardware implementation model is proposed that can be
used in the design of stream ciphers, block ciphers and cryptographic
hash functions. The cryptographic finite state machine (CFSM) model is
no mathematical tool, but a set of criteria that have to be met by a real
hardware finite state machine that will be used in the implementation of
a cryptographic algorithm. Diffusion is studied by means of the diffusion
graph and dependence matrix. For the study of confusion differential
cryptanalysis is used.
In the paper the design of a high-speed cryptographic coprocessor is pre­
sented called Subterranean. This coprocessor can be used for both cryp­
tographic pseudorandom sequence generation and cryptographic hash­
ing. It can be implemented in a straightforward way as (part of) a chip.
The small gate-delay allows high clockfrequencies, and even a moderate
estimation of 20 MHz leads to a (stream-)encryption speed of 0.3 Gbit/s
and hashing speed of 0.6 Gbit/sec.

Keywords: Hardware Cryptography, Stream Ciphers, Block Ciphers, Crypto­
graphic Hash Functions, Pseudorandom Sequence Generators.

1 Introduction

In this paper the design of high speed hardware oriented cryptographic algo­
rithms is addressed. The idea is that the algorithms make use of a finite state
machine that will actually be built in hardware as a chip or part of a chip. This fi­
nite state machine must realize high diffusion and confusion. Because high speed
applications are aimed at, the updating time of the finite state machine is consid­
ered the main limiting factor. Other obvious restrictions are circuit complexity,
number of pins and on-chip memory.

After the finite state machine model is given, it is shown how a block cipher,
a hash function and a stream cipher can be defined in terms of it. For each case
the required properties of the finite automaton are given and motivated.

In Sect. 4 the diffusion graph and its dependence matrix are presented as
useful tools to study the diffusion realized by the updating function. Section
5 addresses the more complicated issue of confusion. For strong confusion the
diffusion must be high, but this is not enough. Absence of (residual) algebraic
structure and resistance against differential cryptanalysis are presented as the
two basic requirements for strong confusion.

© Springer-Verlag Berlin Heidelberg 1992
Y. Deswarte et al. (eds.), Computer Security - ESORICS 92

420

The presented approach is conceived for the design of hardware oriented cryp­
tographic algorithms. The tools that are applied encourage the use of symmetry
and uniformity, leading to compact descriptions. We present a cryptographic
coprocessor that can be used as a high-speed cryptographic pseudorandom se­
quence generator (CPRG) and cryptographic hash fu"uction (CHF). The ap­
proach can however also be used in the analysis of existing algorithms consisting
of a number of equal rounds.

This paper gives an outline of a number of different ideas, methods and their
relations. Because of the space limitations no proofs are given and definitions
are stated in an informal way.

2 The Cryptographic Finite State Machine Model

State Load

~~ c
l c

I Internal State ~ State Read

J.
I

F I l
c t

r--/-f Key J Key Load

Control

Fig. 1. scheme of the cryptographic finite state machine model

As can be seen in Fig. 1, the cryptographic finite state machine model(CFSM)
consists of 4 basic components: the stateregister, the keyregister, the updating
logic and the control- and load(CL) logic. The internal state, denoted by A, is
an array of n statebits: aoa1 ... an_ 1 • The key, denoted by K, is an array of m
keybits: kok1 ... km_ 1 . The internal state is said to be updated, if it is assigned a
new value according to the updating function: At+l :::: F(At, Kt). This is called
an updating operation, iteration or round of the CFSM. At+1 is the successor
state of At. The function F can be seen as the juxtaposition of n component
updating functions a:+ 1 = fi(At, Kt) realized by the updating logic. In practice
the output of every f, always depends on only a subset of all bits of A and of K.
These sets are called the input set and key input set off,. Whether an updating
operation takes place or the internal registers are loaded is communicated by
means of the CL logic.

421

The properties that are required from the CFSM depend on the type of
algorithm for which it is used. In the following section it will be shown how three
different cryptographic primitives can be implemented using a CFSM: stream
ciphers, block ciphers and cryptographic hash functions.

3 Building Algorithms with the CFSM Model

3.1 Stream Ciphers

There is a distinction between synchronous and self-synchronizing stream ci­
phers. Because of the specific requirements of an SSSC, application of the pro­
posed CFSM model would lead to a very inefficient design. The design of SSSC
is treated in [7].

Synchronous stream ciphers are based on a cryptographically strong pseu­
dorandom bitstream generator (PRG). The CFSM model can easily be used to
build a PRG. This can be seen in Fig. 2. The system is initialized by loading
the Initial State into the stateregister and the Key into the keyregister. Each
clockcycle k bits that are at specified positions of the stateregister are presented
at the output as pseudorandom bits.

Initial State

D
I<ey __..

Fig. 2. CFSM based pseudorandom bitstream generator

k random bits
(per iteration)

Because this PRG is intended for cryptographic use, (even partial) recovery
of the key or internal state must be computationally infeasible. More precisely,
suppose a cryptanalist knows an indefinite number of output bits generated after
a certain timet = r. Statebits that are unknown to the cryptanalist are referred
to as private state bits. For this cryptanalist it must be computationally infeasible
to perform one of the following tasks.

- Knowing some or all bits of the internal state at a certain time t; with
t; < r- p, gain any information about keybits or private statebits at t 2:: r.
(p is a small integer depending on the actual PRG, typical p ~ log2 n)

- Knowing some or all keybits, gain any information about private statebits.

In this context computationally infeasible must be interpreted as 'expectedly
slower than exhaustively trying all unknown key-statebit combinations'.

422

l,From these two properties it follows that the security can be solely based
upon the secrecy of the key, or solely upon the secrecy of the initial state. The
former property allows for re-initialization in the clear between two users who
share a secret key.

The way these cryptographic properties are realized differs from the tradi­
tional approach using linear feedback shift registers(LFSR). In the CFSM ap­
proach, cryptanalysis must be prevented by the diffusion and confusion caused
by the updating operation itself.

Because practical PRGs always have a finite number of states, an initial state
must always lead to a cycle. This cycle must have a large length to avoid repe­
titions in the output sequence. PRGs based on LFSR have the advantage that
almost all internal states lie on one cycle, hence choosing the number of state bits
large enough solves this problem. For PRGs based on the CFSM model the cycle
length depends on the initial state and the key. It is hard to predict the cycle
length in individual cases. However, if the mapping realized by A' = F(A, K)
with a constant key K can be considered a random permutation, the cycle length
has a flat probability distribution [2]. With this distribution, the expected cycle
length is 2n - 1 and the probability to choose an initial state with a cycle shorter
than o: is o:j2n(n is the number of statebits). For non-invertible updating func­
tions, the expected cycle length is always shorter. Hence the updating function
should be constructed that it is invertible with respect to the internal state for
each key. In the following this property will be called 'state-invertibility'. The
high diffusion and confusion inherent to a 'good' updating function justify the
randomness assumption.

Intuitively the influence of the key on the updating function should be as
great as possible. This is realized if the updating of a state A with two dif­
ferent keys K 1 and K2 never gives rise to the same state. More formally VA :
F(A, Kt) = F(A, K 2) ::::> !{1 = K 2 . This is equivalent to the statement that the
function A' = F(A, I<) with J{ considered to be the input and A a constant is
an injection. This implies m :5 n. In the following this property will be called
'key-injectivity'.

3.2 Block Ciphers

Figure 3 shows how an iterated block cipher can be built around a CFSM. The
system is initialized by loading the Plaintext into the stateregister. Subsequently
the CFSM is iterated a specified number of times s. During the iterations the
keyregister is updated according to a key schedule, realized by an external (to
the CFSM) module that contains the Key. It is however also conceivable to have
a block cipher with no key schedule. In this case the Key is loaded directly
into the keyregister. After the s iterations, the internal state is output as the
Ciphertext.

This block cipher must be resistant to cryptanalysis. Suppose a cryptanalist
is able to obtain from a black box the ciphertexts corresponding to an indefinite
number of (adaptively) chosen plaintext blocks and vice versa. These ciphertext

Key

+
key schedule -+-

Fig. 3. CFSM based block cipher

423

Plaintext

D
Ciphertext
(after s iterations)

and plaintext blocks are referred to as 'known'. We say the block cipher is re­
sistant to cryptanalysis if it is computationally infeasible for this cryptanalist
to obtain any non-trivial information about the key or plain texts (ciphertexts)
corresponding to unknown ciphertext(plaintext) blocks. By trivial information
is meant exclusion of 'known' plaintext blocks as candidates for decryptions of
'unknown' ciphertext blocks and vice versa.

For decryption of the ciphertext back to the plaintext to be possible, the
updating function must obviously be state-invertible. Moreover, to guarantee the
diffusion and confusion of the round-keys, key-injectivity is a desirable property.

For decryption to be practical, the function A = F- 1(A1
, K) must be easily

implementable using a CFSM with complexity comparable to that of the CFSM
realizing the forward updating function. This restriction was not present with
stream ciphers. Preferentially both F and F- 1 can be realized by the same CFSM.

3.3 Hash Functions

The construction of a cryptographic hash function in terms of a CFSM is de­
picted in Fig. 4. The system is initialized by loading the specified Initial Value
into the stateregister. Subsequently the CFSM is iterated while the keyregister
is loaded with bits coming from an external module that takes care of bit selec­
tion and message padding. The number of iterations depends on the length of
the message and the bit selection scheme. After the last iteration (part of) the
internal state is output as the Hash Result.

If this hash function is to be used for cryptographic purposes it must be
collision free. This means that finding two different messages M 1 and M 2 that
have the same hash result would require a computational effort of the order of
2n/ 2 applications of the hash function.

The bit selection and key loading mechanism is an essential part of the hash
function. Each messagebit should appear several times in the keyregister during
the hashing process. In this way the content of the keyregister during a specific
iteration can not be chosen without affecting it during other iterations. State­
invertibility of F is a desirable property because it assures that there are no
intermediate hash results that have the same successor state with the same

424

Initial Value

N-bit Message Hash Result

~ D (after g(N) iterations)

bit selection -+-

Fig. 4. CFSM based cryptographic hash function

key. Key-injectivity is desirable because it guarantees the dependence of the
intermediate hash result on the selected messagebits.

3.4 The CFSM Model Revisited

Because state-invertibility and key-injectivity of the updating function are ad­
vantageous in all three cases, we incorporate these properties in our CFSM
model.

In case the CFSM is used as a stream cipher or a block cipher without key
schedule, the content of the keyregister is fixed during the iterations. If a block
cipher with key schedule or a hash function are implemented, new bits are loaded
into the keyregister in between the iterations. These will be called respectively
fixed key and variable key applications.

4 Diffusion

Diffusion is the term introduced by C. Shannon [1] to denote the quantitative
aspect of information propagation. In this section the diffusion in the internal
state caused by CFSM iteration is addressed. A useful tool in this study is the
diffusion graph and equivalently the dependence matrix.

4.1 Definitions

A diffusion graph is a weighed directed graph that is associated with a given
updating function and key. Each statebit ai is represented by a node (vertex) i.
There is a directed edge from ito j if ai belongs to the input set offj(A, K). The
weight 0 < Wij ~ 1 of this edge is given by the probability that complementing
only bit ai before updating will cause bit ai to complement after updating. The
dependence matrix is the n x n-matrix with element Wij in row i and column j
and 0 if there is no edge from i to j. If a state A is interpreted as an n-bit binary
number and bitwise EXOR is denoted by EB we have

Wij = 2-n L fj(A, I<)$ fj(A $ 2i 1 K)
A

425

;,From the definition it is clear that the diffusion graph depends on the particular
value of the key. This complicates the analysis of multiple round diffusion in a
variable key application. Moreover, our goal is the design of an updating function
that realizes very high diffusion after successive iterations for all possible keys.
Therefore in the following only updating functions are considered where the
diffusion graph is independent of the key. This can be realized by imposing
certain restrictions on the key-injection.

4.2 Single Iteration Properties

The diffusion graph can be used to get an idea of local and global diffusion. The
sum of the weights of the edges that start from node i can be considered the
diffusion from bit a; caused by updating. It is the expected Hamming distance
between the two successor states oftwo states that differ only in a;. The sum of
the weights of the edges that arrive in a node i can be considered the diffusion to
bit a; caused by updating. It is a measure for the diffusion caused by the binary
function qA, K). The sum of the weights of all edges in the graph, divided by
the number of nodes, is a measure for the average diffusion per bit. This number
is called the diffusion factor VF of the updating function. We would like this
factor to be maximum under the given constraints.

The number of edges arriving in a node i is equal to the cardinality of the
input set off;(A, K). Hence the diffusion is limited by the number of arguments
of the f;. Equivalently, the diffusion is limited by the number of different input
sets a; belongs to. The contribution of an edge to the total diffusion is propor­
tional to its weight. If Wij = 1 bit aj depends on a; in a linear way, thereby
realizing unconditional propagation. Given the topology of the diffusion graph,
the diffusion can be maximized by choosing all weights equal to 1. However, this
implies a completely linear updating function and strong confusion demands the
presence of nonlinearity. Hence there must always be a substantial number of
Wij < 1. The diffusion graph with only the edges drawn with weight 1 reveals
the part of the diffusion that is certified. This so called linear suograph provides
a skeleton for the information propagation.

Because the CFSM has to be used in high speed applications, the updating
speed is important. While this speed is limited by the component updating
function that has the largest gate delay, every f; contributes to the diffusion.
Hence once the updating speed has been fixed, it will be advantageous for the
diffusion to design the f; as complex as possible within the given timing and area
constraints. Obviously this will cause all fi to have comparable complexity.

4.3 Multiple Iteration Properties

In this subsection the diffusion caused by several consecutive iterations is treated.
This can readily be investigated with the diffusion graph. A statebit ai at time
t = k depends on statebit a; at time t = 0 if there is a path of length k from
node i to node j. There can be multiple paths of length k from i to j. This
k-round dependence can be depicted in a k-round diffusion graph. Calculation

426

of the weights of the edges of this graph requires in general reconstruction of

the iterated function. This is only feasible for small k and relatively simple

fundions. Moreover, the simultaneous occurrence of nonlinearity and multiple
paths introduces key dependence into the graph.

Our goal is to maximize the k-round diffusion for k = 2, 3, For k = 2,
bit ai at t = 2 written in terms of state bits at t = 0 gives

a~'= fi(aj, a~, ... , a~, K') = fi(fj(A, K), fk(A, K), ... , fp(A, K), K') .

If the input sets offj,fk, ... ,fp don't overlap, ai' depends on the maximum

number of statebits possible. This is equivalent to saying that there are no mul­

tiple length-2 paths from any node to node i. If this holds for all nodes, the

updating function is said to be {2)-matched. In this case the weights of the 2-

round diffusion graph can be calculated easily by multiplication. Moreover, if

the component updating functions are mutually similar, it can easily be shown

that the 2-round diffusion is maximized. This can easily be extended to 3 (or

more) rounds by considering paths of length 3. Consider a CFSM with mutually

similar fi and diffusion factor Vp = a. If it is matched its 2-round diffusion

factor will be a 2
, its 3-round a 3 ... Hence for a matched updating function the

k-round diffusion factor grows exponential ink for small enough k. For larger k
the diffusion factor stabilizes around n/2.

In all algorithms, the diffusion and confusion of the keybits into the internal

state is essential for the cryptographic security. After the first iteration the de­

pendence of the internal state on the key is assured by the key-injectivity. During

the following iterations the keybits are diffused over the state by the updating

function. In fixed key applications the same keybits enter the updating function

again every new iteration. In variable key applications some new bits are intro­

duced in the keyregister every iteration. Using the diffusion graph, weaknesses

in the key schedule and message bit selection can be found easily.

5 Confusion

Even more important than high diffusion is strong confusion. The term confusion

was introduced by C. Shannon [1] to denote a qualitative aspect of information

propagation. Strong confusion corresponds to involved and complicated depen­

dencies, weak confusion to simple dependencies. The cryptographic strength of

all cryptographic algorithms is ultimately based on the presence of strong con­

fusion.
The problem with studying confusion is that the apparent complexity of a

function depends on the point of view. For instance, linear modular arithmetic

looks very complicated if studied at the bit level. Hence a function that appar­

ently realizes complex dependencies may have a simple form if looked at from

another angle. Every discrete function can be expressed at the bit level. Higher

levels of description usually require certain algebraic properties. We believe the

probability that there are 'simpler' ways of describing an iterated function can

be minimized by designing the function at the lowest level possible: the bit-level.

427

This means that in practice the building blocks of a CFSM updating function
can be limited to logical gates, small look-up tables and bit-permutations.

Two necessary properties for the realization of strong confusion are high dif­
fusion and nonlinearity. It is not immediately clear how this nonlinearity should
be realized. However, if the updating function is designed at the bit-level and
has no higher algebraic structure, there exists an excellent set of tools to investi­
gate the confusion. By this set we mean differential cryptanalysis [3]. The most
important criterion for good diffusion is the absence of high probability multiple
(updating function) round characteristics.

If the CFSM is used as a PRG, a number of statebits are presented at the
output after every iteration. The positions of these state bits should be carefully
chosen to minimize the correlation between the output bits. If there are no high
probability multiple round characteristics, partial knowledge of the state at a
certain time is of no use after some iterations.

In all three CFSM applications, the confusion of the keybits is essential. To
prevent recovery or manipulation of part of the key in variable key applications,
every key bit (or messagebit) must reside in the keyregister for several iterations.
The confusion of the keybits is then guaranteed by the property ofkey-injectivity
and the strong confusion caused by the updating function.

6 Subterranean: A High Speed Cryptographic
Coprocessor

A cryptographic coprocessor design is presented that can be used as a pseudo­
random bit generator and a hash function, respectively called Substream and
Subhash. Subhash is related to the function Cellhash that was presented at
Asiacrypt '91 [6]. With respect to Cellhash the updating function is modified
to optimize the resistance against differential cryptanalysis without. augmenting
the circuit complexity. In Cellhash the hash result was obtained by reading the
internal state after a number of iterations. Because the possibility of reading
the internal state would compromise the security of Substream, this has been
avoided in Subhash.

Substream and Subhash are powerful primitives in the realization of com­
puter security. A CPRG can be used for confidentiality of stored or transmitted
data by stream encryption [4]. A CHF is an indispensable component of practical
data integrity, authentication and digital signature schemes [4, 5]. Moreover, the
security of many cryptographic protocols depends on a CHF and unpredictable
random bits that can be produced by a CPRG [4]. In the providing of security
services, all bulk operations on large variable-length files, namely encryption and
hashing, can be performed by the proposed coprocessor.

6.1 The Design Approach

In this section we give the design approach taken to realize the proposed CFSM.
The basic idea behind it is simplicity. By introducing uniformity and symme-

428

try in the updating function, the analysis of diffusion and confusion is greatly
simplified. Moreover, the resulting hardware description is short and elegant.

The updating function is defined as the composition of a number of subse­
quent transformations that treat the statebits in the most uniform and symmet­
ric way possible. Each transformation takes care of a required property of the
updating function. There are essentially four different transformations:

Nonlinearity: a 'local' nonlinear operation. The uniformity demands that
every statebit enters at least one nonlinear function.

- Diffusion: a 'local' linear operation. The linearity of this transformation
gives a certified diffusion.
Dispersion: a bit permutation that moves statebits that depend on over­
lapping sets of input bits away from each other to accomplish matching.
Key Injection: m statebits are each EXORed with a different keybit. This
guarantees key-injectivity.

The first three transformations have to be invertible to guarantee state­
invertibility. In variable key applications the key load mechanism is an important
part of the algorithm and has to be properly defined.

6.2 Specification of the Internal Functions

The operation of the Coprocessor is given by the calculation of next states At+1

and Kt+l and output zt from At, Kt and the input Bt. For both registers there
are options, indicated by means of the control logic. For the internal state there
are 3 options : reset (to the all-0 state), hold and update. For the key there
are 2 options : hold and load. Every iteration a 16-bit value Z is presented at
the output. We will now specify the updating, loading and output functions in
detail.

The updating function At+1 = Fs(At, Kt) can be considered as a 5-step
transformation of the internal state A. In the following, all indices should be
taken modulo 257, V means OR and El7 means EXOR.

Step 1 :
Step 2:
Step 3 :
Step 4:
Step 5:

ai == ai EB (ai+l V iii+2),
a0 == iio
a; == ai EB ai+3 EB ai+s,
ai == ai EB ki-1,
a; == a12*i,

0 :S i < 257

0 :S i < 257
1 :S i < 257
0 ~ i < 257

Figure 5 clarifies how the five steps of F 8 contribute to the calculation of one
statebit. Step 1 is a nonlinear cellular automaton (CA) operation where each
bitvalue a; is updated according to the bitvalues in its neighborhood (in this step
and step 3 periodic boundary conditions apply). This particular CA operation
is invertible if the length of A is odd. Step 2 consists merely of complementing
1 bit to eliminate circular symmetry in case all statebits are 0. Step 3 is a linear
CA operation. This step is invertible if the length of A is no multiple of 7 or 31.
In step 4 the actual keybits are injected in A. Step 5 is a bit permutation where

429

bits are placed away from their previous neighbors. The length of A is 257 (a
prime) to make step 1 and 3 invertible and to avoid circular symmetric patterns
in A.

step 1

step 2

step 3

krs step 4

step 5

t+l

Fig. 5. schematic overview of the calculation of one output bit using the F s function.
It clearly shows tha.t each output bit depends on 9 input bits and that nearby output
bits depend on non-overlapping sets of input bits.

The updating function is invertible with respect to the state. For a fixed key,
every state has exactly one predecessor. However, this inverse function is very
hard to implement both in hardware and software.

In the key load option 32 bits are loaded into the keyregister in parallel. If a
32-bit word B = bob1 ... b31 is loaded at time t we have

for 0 ~ i < 32 and for 32 ~ i < 256

The 16 output bits zoz1 ... z15 at timet are taken from the internal state At.
The indices of the used statebits are given by

(11,24,37,48,60,73,84,98,117,130,143,154,168,200,235,249)

These positions have been chosen such that:

- No bit of zt depends on bits of zt- 1 through F •.
- Output bits zt depend on non-overlapping sets of bits of At- 1 .

- No bit of At depends on more than one bit of zt- 1 through F •.

6.3 Diffusion

In this subsection the diffusion resulting from applying the updating function to
the internal state is studied.

430

A bit of At depends on 9 bits of its predecessor state At-1 . More precisely

the bit a~ depends on ai;!i+k 'with k E n = {p I 0 ::::; p < 6 or 8 ::::; p < 11}. This
can be checked by explicitly combining all five steps of F • and is illustrated in

Fig. 5 for bit a92. By recursively applying this the diffusion of multiple iterations

can be studied: a~ depends on a~;?(12•Hk)+L with k,f En. Hence every bit of At

depends on 81 bits of At-2 • After three iterations the dependence is complete,
i.e. a statebit at timet depends on all bits of N-3 . Alternatively a bit of At
affects 9 bits of At+l, 81 bits of At+2 and all bits of AH3 . The updating function

has Dy = 6 and is 2-matched.

6.4 Confusion

In differential cryptanalysis the propagation of differences in the input to inter­
mediate values is studied [3]. Suppose we have two different internal states A
and A* and their difference is defined by the bitwise EXOR: A'= A (f) A*.

An n-round characteristic is given by an initial EXOR A'0 , intermediate

EXORs A'i and terminal EXOR Am. The probability of this characteristic is

the probability that two internal states A0 and A*0 with A'0 = A0 EB A*0 give

rise to the specified succession of EXORs. The importance of a characteristic in

differential cryptanalysis is proportional to its probability.
For the analysis we split the function F s in the nonlinear step 1 and the linear

steps 2-5. The result after performing step 1 on A (*) is called B(*). The result of

performing steps 2-5 on B< *) is called C(*). It is assumed that the key is equal

in the two cases. We will first study the propagation of differences during the

first step.
If the local rule of step 1 is rewritten with+ denoting EXOR and concatena­

tion denoting AND a bit of B(*) is obtained by b~*) = 1 +a~*) +a~*) +a~*) a~*) , • • •+2 •+1 •+2.
For the bits of B' we have

(1)

For a given input difference the a~ are fixed and the a; are variables. From (1) it

can be seen that b~ depends in a linear way on bits of A. For a given A' the values

of B' can be expressed in terms of A-bits by a vector equation B' = M A+ I<.
Here M and J{ are respectively a matrix and a vector fixed by the value of A'. If
r is the rank of this matrix (of A'), the number of possible B'-configurations is
2r, each appearing with probability 2-r. The tank M is equal to the number of

linearly independent equations in bits of A. Using (1) it can easily be shown that

r is equal to the number of 1-bits plus the number of 001-patterns in A'. Hence

the probabilities of the output differences are only large for input differences

with small Hamming weight.
The difference C' obtained after performing steps 2-5 to B and B* can be

calculated using only B'. This is due to the linearity of step 2-5. Hence for a
given B' there is only one C', obviously with probability 1. The contribution of
steps 2-5 to the confusion becomes clear only when characteristics over multiple

iterations (rounds) are considered.

431

In practice, the bits of the intermediate states that are relevant for a certain
characteristic can be considered as independent. In this case the probability P
of an n-round characteristic is given by

log2 P = - 2:::: ri

O$i<n

(2)

with ri the rank associated with intermediate difference A'i. Hence the most
probable n-round characteristic will be the one with a minimum number of
1 and 001 patterns in the intermediate EXORs A'0 to Am-l. Using (2) and
the uniform (and circular symmetric) behaviour of the updating function with
respect to EXOR propagation, upper limits for these probabilities are easily
found. Moreover, for small n the range of essentially different candidate high­
probability characteristics can be restricted enough to allow exhaustive search
over the remaining possibilities in reasonable time.

Table 1 lists the probabilities and initial EXORs A0' of 1- to 5-round char­
acteristics with maximum probability for the Cellhash round function and for
Subterranean. We believe that the sharp decrease of the probabilities for growing
n is an indication that calculations involving bits from internal states separated
by several iterations become extremely complicated even if a small (say 8) num­
ber of iterations are considered. This sharp decrease is caused by the certified
diffusion mainly due to (the linear) steps 3 and 5 of F8 •

n Cellhash Subterranean

1 z-2 z-2
2 z-8 z-s
3 2-20 2-2s

4 2-46 2-68
5 2-96 2-1s4

Table 1. the highest probabilities of characteristics for a small number of rounds

6.5 Substream

In Substream mode the Cryptographic Coprocessor is initialized by fixing the
Initial State and the Key. This takes 16 input words (of 32 bits) and 16 clock­
cycles. This can be expressed in a sequence diagram:

Clock cycle
t = 0
t = 1. .. ,7
t = 8
t = 9 ... ,15

Internal State
O(reset)
-{hold)
Fs{Update)

432

Key Load
It(load)
It
Kt-s
Kt-s

Output

After initialization 16 random bits ror1 ..• r 15 are presented at the output
per iteration and the key is not changed:

Clockcycle Internal State Key Load Output
t > 16 -(hold)

It is claimed that Substream meets the cryptographic criteria stated in Sect.
3.1 with p = 8. The expected cycle length is 2256 and the probability to choose
an initial state with a cycle shorter than o: is o:/2257 .

We would like to stress that no absolute proof of security can be given for
any practical cryptographic algorithm. However, in the following paragraph we
will give the line of reasoning that has lead to the cryptographic claims.

If the key is known, cryptanalysis boils down to total reconstruction of the
internal state at a certain time (say At0). Partial reconstruction of the internal
state at a certain time is of little value because of the high diffusion and confusion
caused by updating. In a known plaintext attack the cryptanalist is provided with
16 bits per iteration. Hence the statebits that are used in the calculation of Ato
must originate from at least 17 different iterations. If both the key and the state
are unknown to the cryptanalist, statebits from at least 33 different iterations
are needed. The claimed cryptographic security of Substream is based on the
infeasibility of calculations involving statebits separated by multiple iterations.

6.6 Subhash

The system is initialized by resetting the internal state and making sure that the
keyregister contains only O-bits. The (padded) message is loaded into the keyreg­
ister 32 bits at a time while the finite state machine is iterated. After loading
all messagewords 24 more iterations are performed. During these iterations all-0
words are loaded into the keyregister. The Hash Result is given by the words Z
output during the last 16 iterations.

Suppose we want to calculate the hash result Hs of a b-bit message using
Subhash. Here b may be any integer. Before hashing, the message has to be
padded so that its length is a multiple of 32.
Padding of the message
The message is extended with a number p of O-bits so that its length in bits is
a multiple of 32 and 0 ~ p < 32. Subsequently the message is extended with
a 32-bit word representing the value 232 - 1 - p, most significant bit first. The
resulting message can be written as M 0M 1 ... MN-l, i.e. the concatenation of N
(32-bit) words Mi.

The hashing process

Clockcycle
t = -7 ... ' -1

t = 0
t=l. .. ,N-1
t = N ... , N+7
t = N+B ... , N+23

Internal State

O(reset)
Fs
Fs
Fs

433

Key Load
(load) 0
Mt
Mt
0
0

The Hash Result is defined by HoH1 .. . Hl5·

Output

Ht-CN+s) = zt

The claimed cryptographic security of Subhash is based on the fact that
every messagebit is injected into the state 8 times during the hashing process,
realizing very strong confusion.

6. 7 Practical Considerations

The clock frequency is limited by the gate-delay of the updating function. This
is equal to the sum of the gate-delays of one NAND, and three EXOR.s. An
estimation of 20 MHz leads to a (stream-)encryption speed of 0.3 Gbitjs and
hashing speed of 0.6 Gbitjsec.

The interface of the finite state machine to the outside world is formed by
a 32-bit bus and the control connections. The key and internal state cannot be
read from the outside.

In Substream mode, a new key is loaded only rarely. It must be possible to
use the same key for a long time. For some applications an on-chip key memory
(EPROM, EEPROM, ...) that can store a few (1 to 16) keys would be desirable.

At the moment we are investigating the implementation of the proposed
cryptographic coprocessor in collaboration with IMEC (Interuniversitair Micro
Electronica Centrum).

7 Conclusions

The design of conventional cryptographic algorithms is studied from an engi­
neering point of view. A cryptographic finite state machine model is introduced
that can be used at the core of stream ciphers, block ciphers and hash functions.
The design of such a finite state machine is considered as an optimization of the
updating function with respect to diffusion and confusion within certain circuit
complexity and speed constraints.

A cryptographic finite state machine is presented that can be used for hashing
and stream encryption, both in the Gbitjsec. range.

References

[I] C.E. Shannon, Communication theory of secrecy systems, Bell Syst. Tech. Journal,
Vol. 28, pp. 656-715, 1949.

434

[2) B. Harris, Probability Distributions Related to Random Mappings, Annals of
Mathematical Statistics, 31 (1959), 1045-1062.

[3] E. Biham and A. Shamir, Differential Cryptanalysis of DES-like Cryptosystems,
Journal of Cryptology {1991) 4 : 3-72.

[4] D. E. Denning, Cryptography and Data Security, Addison-Wesley, Reading, MA,
1982.

(5) I. Damgard, Collision-Free Hash Functions and Public-Key Signature Schemes. In
Advances in Cryptology-Eurocrypt '87, pp .. 203-217. Lecture notes in Computer
Science, vol. 304, Springer-Verlag, Berlin 1988.

[6) J. Daemen, R. Govaerts and J. Vandewalle, A Framework for the Design of One­
Way Hash Functions Including Cryptanalysis of Damgard's One-Way Function
Based on a Cellular Automaton, Abstracts Asiacrypt '91.

[7) J. Daemen, R. Govaerts and J. Vandewalle, On the Design of Self-Synchronizing
Stream Ciphers, Proceedings ISITA '92, Singapore, Nov. 16-20 1992.

