Strict Functionals for Termination Proofs

Jaco van de Pol and Helmut Schwichtenberg !
-Mathematisches Institut, Universitit Miinchen
jaco@phil.ruu.nl schwicht@rz.mathematik.uni-muenchen.de

A semantical method to prove termination of higher order rewrite systems (HRS)
is presented. Its main tool is the notion of a strict functional, which is a variant
of Gandy’s notion of a hereditarily monotonic functional [1]. The main advantage
of the method is that it makes it possible to transfer ones intuitions about why an
HRS should be terminating into a proof: one has to find a “strict” interpretation
of the constants involved in such a way that the left hand side of any rewrite rule
gets a bigger value than the right hand side. The applicability of the method is
demonstrated in three examples.

e An HRS involving map and append.
e The usual rules for higher order primitive recursion in Gédel’s T

e Derivation terms for natural deduction systems. We prove termination of the
rules for S—conversion and permutative conversion for logical rules including
introduction and elimination rules for the existential quantifier. This has
already been proved by Prawitz in [5]; however, our proof seems to be more
perspicuous.

Technically we build on [7]. There a notion of a strict functional and simultaneously
of a strict greater-than relation >4, between monotonic functionals is introduced.
The main result then is the following. Let M be a term in 3 normal form and
O € FV(M). Then for any strict environment U and all monotonic f and g, one
has f >non 8 = [M]uigee) >str [M]ujoog)- From this van de Pol derives the
technique described above for proving termination of higher order term rewrite sys-
tems, generalizing a similar approach for first order rewrite systems (cf. [3, p. 367]).
Interesting applications are given in [7].

Here a slight change in the definition of strictness is exploited (against the
original conference paper; cf. [7, Footnote p. 316]). This makes it possible to
deal with rewrite rules involving types of level > 2 too, and in particular with
proof theoretic applications. In order to do this some theory of strict functionals
is developed. We also add product types, which are necessary to treat e.g. the
existential quantifier. '

1Both authors are partially supported by the Science Twinning Contract SC1*-CT91-0724 of
the European Community.

351

1. Monotonicity and Strictness

Let p, o, T denote simple types over some base types . (containing at least 0),
composed with — and x. For simplicity we consider the sets T, of all fu_nctlon_als
of type p over some ground domains 7,. The ground domains are provided with
some partial order >,.

Definition. For any type p we define the set M, CT,of monotonic functionals
of type p and simultaneously a relation > on Tp.

G (& M, =T.

(b) f € Mooy <= forallx,y € Mo, £(x) € My and
’ if x >y then f(x) 2 f(y)-

(C) Moyr = Mg X M.
(ii)) (a)n>,m < n> morn=m.

(b) £ >or g <= for all x € Mo, £(x) 2r 8(X)-
(c) (a,b) 25xr (c,d) &> a2s¢C and b >, d.

We will use the following notation: & — p denotes the type 01 = =" In - p.
Let x(0) denote the left component of the pair X and x(1) its right component.
This allows us to write projections and applications in a uniform way. Further-
more, simply typed terms M, N are introduced as usual: Tyged 'va,nables z, Y,
z, application M N, abstraction Az M, pairing (M, N) and prO]eCtIODS.ﬂ',‘(M) for
i =0, 1. Projections are also written M0 and M1. We use sta‘nda-rd notions of free
and bound variables, substitution, interpretation of M in a da:)ma:m under environ-
ment U (denoted by [M]y). Using the new notation for projections, the previous
definition can be written very compactly as:

Definition. For any type p we define the set M, € Tp of monotonic functionals

of type p and simultaneously a relation 2 on To-

(i) fe M < forall %, € MU{0,1}, if% >, then £(¥) 2 £(¥)-
(i) £>g < forallge MU{0,1}, f(X) 2 g(%)-

Here % and ¥ only range over vectors for which f(X) and f(¥) are of base type.

® > ¥ means: For all i such that x; € M, x; 2 ¥i-
Lemma 1. For any term M of the simply typed A—calculus we have

(i) [M]y € M for any monotonic environment U.

(i) U>V = [Mlu 2 [M]v for monotonic environments U, V.

Proof by simultaneous induction on M (standard).

352

Definition. f >nong <= forallX e MU{0,1}, £(X) > g(R).

Remark. Gandy’s definition of hereditarily monotonic functionals from [1] has
the following form. For any type p he defines the set Gp © T, of hereditarily
monotonic functionals of type p and simultaneously a relation >Gandy On 7, by

(i) f€G <= forall X,§ € G, if X >Ganay ¥, then f(X) > f(¥). Here
X >Gandy ¥ means that at least once we have x; >Gandy ¥i and otherwise
X5 = Y-

(ii) f >Ganay g8 <= for all X € G, f(X) > g(X).

This definition is not well suited for termination proofs. Consider e.g. the term
zz(My 0), where z is interpreted by x € G. Then also in the case [M] >Ganay [V]
one cannot conclude [zM(Ay0)] > [zN(M\y0)], since [Ay 0] ¢ G. Hence Gandy in
(1] had to restrict himself to A-I-terms. As an alternative it is tempting to replace
“for all X, ¥ € G” in (i) by “for all X, € M”. Furthermore it turns out to be useful
to add f € M to the right hand side of (i) and also f > g to the right hand side of
(ii). On pairs, the order >ganqy is defined pointwise in [1]. We propose a change
to obtain a more well suited order for termination proofs. If in a pair (M,N), M
rewrites to M’, with [M] > [M'], one wants to conclude that the corresponding
interpretation gets smaller. These considerations motivate the following definition:

Definition. For any type p we define the set S, C M, of strict functionals of
type p and simultaneously a relation >4, on To.

(i) f€S <= feM, and for all X,7 € M U{0,1}, if R >, 7, then f(x) >
£(¥). HereX >, ¥ means that at least once we have x; >, y: and otherwise
Xj 2 Yj-

(i) f >4y g <= f>g and

(a) (base type) f > g; or
(b) (arrow type) for all x € S, f(x) >q, g(x); or
(c) (product type) £(0) >str g(0) or £(1) >gir g(1).

Remark. In [7] a very similar modification of Gandy’s definition is used. In a
preliminary version, the requirement f > g in (ii) was missing. For the examples
considered in [7], which only concern rewrite rules for constants of level < 2, this
makes no difference. However, if one considers higher order rewrite rules like those
for the primitive recursion operators in Gédel’s T, then it is necessary to be able to
infer f > g from f >, g. This property is not satisfied without this requirement.
(For the proof consider two functionals f,g of level 2 satisfying for all x € S
the inequality f(x) > g(x). Now modify these functionals on the non-strict, but
monotonic functions, e.g. by giving f on [Az 0] the value 0 and g on [Az0] the value
1.)

From the definition it is clear that from f € S and x € M U {0,1} we can
conclude f(x) € S. Furthermore from § C M we get immediately f >mon g =>
f >str 8-

353

Theorem. Let M be a term in B normal form and O € FV(M). Then for any
strict environment U and all f,g € M

f>mon 8 = [M]uges >see [IMluiong-

Proof by induction on M. Let M be in long normal form. Let f,g € M with
f >mon g be given. Then > holds by Lemma 1(ii).

Case AZ.0OM. Let X € S and V := U[Z — X]. From £ >mon g We get

£([M]vigs) >mon 8([Mlvioon)

and therefore algo >str- Furthermore from f >pon g_we obtain f > g, hence
Mlvigsg > IMlviosg- Now g([Mlvioss) > g([Mlviong) follows because
g e M.

Case \Z.yM with y # 0. Let X € S and V = U[f = X For any 1 with
Oe FV(MZ) we have [Mi]]V[DHf] >str ﬂMi]V[Di—)g] by IHL hence [Af]vﬁj,..f} >str
[M lviog- Since V(y) € S, we obtain [yM]vio-e > lwMlvo-g-

Case A\&.(Mo, M;). Then O € FV(M;) for some i € {0‘,1}. Let X € S and
V :=U[Z — X|. By [H [Mi]vio-g >ste [Milviosg for this <. O

This theorem shows that the strict functionals form an interesting class. In %he
rest of this section we will explore the strict functionals and in the next section
it will be shown how to use them in termination proofs. The first questiop is of
course, whether there exist such functionals at all. To construct strict functionals,
we surely need them on the base types. Hence we assume that for any tuple
L1,.-.,ln,t of base types we are given a strict function + of type ¢1 — ... —+ in ~—-H
(written in infix notation, or as prefix }5; we will write .O‘ for «}t‘.) Using this
+, we simultaneously define special functionals S? (a strict functloqal of t_vpehu
for any o) and M, (a measure functional of type ¢ — 0), vzhefe'o is one of t e
base types. In this definition, S7 denotes SP,---, 8P, and M(f) is to lze -read as
M(f;,),- -, M(f;,), where f;,,--,f;, are the proper ‘arguments among t;.x.a;. l:;::;
the 0 and 1 used for projections. These shortcuts will be used frequently. In
last equation S? (f) is to be of base type.

Definition.
M. (f) +70(£(57)) o
My pxr(f) = M,,(f(§5,0))+1\1,(f(33,1))
so(f) = S M()

: ; P b -
In examples, we assume that the +5 are chosen in Suf}.i a yi}hii‘;‘;egmi F;;
0= = 0* holds for any combination of base types and + 18139 ® e the empty
instance, we may take 0 in N with usual order and addition, or & > ensthe, Under
list in N* and let + be concatenation and > be the comparison S

354

these assumptions M, = S°~*°. By induction on the types one can see immediately
that M(S) = 0.

Here are some examples:

St = 0
SL‘—)L (x) = x,
st=9=>(r) = £(0),
S((L-—>L)—+L-—>L)—)(L~+L)-—>L—-n(F, f, x) _ F(SL-—)L’ 0) + f(O) +x,
$7Hxy) = x+y,
SLXL—‘)LXL(x,y) — (X+y,x+'y),

§OXT (SU,ST).

Lemma 2. For any type p, both M, and S are strict.

Proof by simultaneous induction on the type p. If p is a base type, then S* ={*
and M, (n) = +'7°(n). Strictness is clear. So let p be some compound type.

Let X,¥ € MU{0,1} be given, with £ > ¥ and S°(X) of base type. The Min
1\7.[(5:') all have type smaller than p, so they are strict by IH, hence monotonic. This
yields that M(X) > M(§), so also SM(R) > S M(§). This proves monotonicity
of S#. Next, assume that % >str ¥ holds. 'I_’.hen > holds, and for some 1, x; >gr ¥i-
By IH M(x;) > M(y;), so >, M(X) > 5" M(¥). This proves that S? is strict.

Next we prove strictness of M,. Let p = 5 — 7, with 7 not an arrow type. Let
f,g € M, begiven. Note that the S7 are strict by IH, hence they are monotonic too.
Soiff > g, then f(S7) > g(SP). Moreover, if f >4, g then £(S7) > g(S7). Incase
T is a base type, this proves both monotonicity and strictness of M,. Otherwise,
T = Tp X 71, and we use that M, and M,, are strict by IH, and hence monotonic
too. The monotonicity of M, then follows from monotonicity of the projections
and +. For strictness, note that either £(S,0) > g(S,0) or £(S,1) >eir g(5,1).
For the other component > holds. Now strictness of M, follows from strictness of
the M, and of 970, 0

The success of the method, to be developed in Section 2, depends on finding
strict functionals. By now, we have only seen the S functionals as examples. The
following lemma enables us to find a lot more strict functionals:

Lemma 3. For any strict functional G and monotonic functional H, the func-
tional F defined by F(X) := G(X) + H(R), is strict. :

Proof. Let X >, § for some monotonic ¥ and . Then G(X) > G(¥) (by strictness
of G). By the definition of >, we obtain ® > ¥, hence by monotonicity of H,
H(X) > H(¥). This yields F(%X) > F(7). 0

Note that this result doesn’t hold if one drops the requirement f > g in the
definition of £ >, g. So this addition is motivated by the fact that it enables usto
find more strict functionals easily. We proceed with showing that one cannot get
smaller strict functionals. '

355

Lemma 4. Consider the special case that the only ground domain is N with usual
ordering and addition. Then for any f € S, f > S°.

Proof. We use an operation L, (lower by 1) on functionals, defined by induction
on the type. L, takes two arguments, a functional f of type ¢ and a sequence & in
MU {0, 1}, such that f(3) is of base type. The result of L, (f,d) will be of type o.
We will write Lz (f) for L, (f,).

0 ifn=
Le(n) { n-1 otherw(i)se
Liag(f,x) = La(f(x))
L(O,i)((x’ y)) = (Li(x)a Y)
L(l,é’)((xa y)) = <X, Li(y))‘

Note that the & is only used to know which of the components of a product to
lower. With induction on the types, it is easy to see that for any & and monotonic
x’

(i) L is monotonic, and

(i) M(Lz(x)) = Le (M(x)).

We now prove the lemma.by a main induction on ¢. For the base type, we have
to show that m > 0 for m € N, which clearly holds. If ¢ = p x 7, observe that by
IH, for any strict pair (x,y), (x,y) > (S#,S7), and that the latter equals S7. If
o = p — 7, we have to prove that for monotonic x, f(x) > S?(x). This is proved
with induction on M(x).

If M(x) = 0, we use that f(x) is strict, hence f(x) > 8™ (main IH). Now for
monotonic X we obtain f(x,%) > S7(X) = M(x) + S™(X) = $7(x, X).

If M(x) =n+ 1, we can find & with elements among S and 0 and 1, such that
x(d) > 1. Define y := Lg(x). By (i) above, y is monotonic. We first show, that
X >er v. It suffices to show that x(Z) > y(Z), where Z is obtained from & by
replacing the real arguments by arbitrary strict function_z?,ls. (i.e. the 0 and 1s for
projections are not replaced.) By IH, we have that Z > S, hence x(Z) > x(d) > 1.
Hence y(Z) = x(Z) — 1.

Now we show that for monotonic X, f(x,%) > S°(x,X). Note that f(x,X) >
f(y, %), because f is strict. By (ii) above M(y) = n. Hence we can apply the inner
IH, and obtain f(y,%) > S°(y,X) = n + S(X), hence f(x,X) > n+1+S(X) =
§7(x,%). O

So we have found out that S(X) + H(X) is strict in X for monotonic H and
that S is a minimal strict one. One might wonder if all strict functionals have
the form S + monotonic. However, this is not the case. Consider F(f) := f(1),
of type (0 — 0) — o. This is clearly strict. But the difference between F and S
is not monotonic: Put f(n) := max(1,n) and g(n) := n. Then f and g are both
monotonic, and f > g. But g(1) — g(0) > (1) - £(0).

356

2. Termination

To be able to apply the theorem above to prove termination we of course need to
know that >, is a well-founded partial ordering on any T,- This can be proved
if we assume that for the base types ¢ we are given domains 7, together with well-
founded (partial) orderings >,.

Proposition. >, is well-founded on any Tp-
Proof. Let (x;)ien of type p be given. Consider (M, (x:)):en- 0

Following [7] we define a higher order term rewrite system (HRS) to be given
by rules L — R with closed terms L, R of the same type p. Then M; — M,
(M, rewrites to My) is defined to mean that we have a f-normal term M with
O € FV(M) such that for some rule L ~ R

My = M[L/O)g and M, = M[R/E]]Lﬂ.
Here N|; denotes the f~normal form of the term N ; B is defined as usual for arrow
types, and for product types by the two rules r; (Mo, M) — M.

Note that we only require from L, R that they are closed terms of the same
type. Closedness is not a restriction, but it avoids substitutions in the definition of
a rewrite step. If L and R are not closed, one can simulate the step M[L?] — M[R°]
by M[(AZ.L)Z°] - M[(\#.R)Z°], where £ is the list of variables occurring in [or
7. Hence this notion of an HRS is quite liberal (and e.g. strictly includes the one
given by Nipkow in [4]). The reason for this liberality is of course that termination
results get stronger that way. See [§] for a comparison with other higher-order
rewrite formats.

Ezample. Consider the rule Az.z + z — Az z. Then
Au,v.c(Aw.wu + wu) (v + v) = Ay, v.c(Aw.wu)v

using the term M := \u, v.c(Aw.O(wu)) (Ov).

Now we obtain as in [7] the following method to prove termination of higher
order rewrite systems.

(1) For the base types ¢ choose domains 7, together with well-founded (partial)
orders >,. Furthermore find for any tuple ¢1,...,¢n,¢ of base types a strict
function + of type ¢; — ... — lp = L.

(2) Find an appropriate strict interpretation of the constants.

(3) For any rule L — R of the higher order rewrite system show that
[L] >mon [R].

Theorem. Any HRS satisfying (1)~(3) is terminating.

357

Proof. Assume that we have (M;);en such that M; — M, for alli € N. Let U be
a strict interpretation. Then we obtain
[M:]y [M[L/O]u
= [Mlygouy
>str [[M]]U[EIH[R]] since HL]] >mon |[R]I
= [M[R/O]v
= [Min]u.

This contradicts the well-foundedness of >¢,. O

In Section 3, termination of Gddel’s T is proved using this method. Section 4
contains a termination proof for the proper reductions and permutative conversions
on derivation terms of first order logic. We first treat a well known small example,
to illustrate the use of the proposed strategy to prove termination of HRSs.

Consider terms built up from the constants

nil :o append :0—0—0
cons :0—0—o0 map :(0—0)—=0—o.

The types are chosen such that e.g. map(A\z append(z,z),£) is well typed. Terms
of type o represent finite lists of lists. The functions map and append are defined
via the following rewrite rules (for readability, we drop the initial As):

append(nil,¢) — £ (i)
append(cons(k,£),m) ~ cons(k,append(£,m)) (i)
map(f,nil) ~ nil (iii)
map(f,cons(k,?)) + cons(f(k), map(f,¥£)) (iv)
append(append(k,£),m) +~ append(k,append(¢,m)) (v)
map(f,append(¢,k)) + append(map(f,£), map(f,k)) (vi)

To prove termination, we have to satisfy (1), (2) and (3) above. For the ground
domain, we choose N, with the usual order and addition. The interpretation of the
constants is specified in the following way:

[nil] :=1
[cons](m,n) =m+n+1 [map)(f,m) = X7y S(5) +3n +1
[append](m,n) :=2m+n+2
The interpretations of nil, cons and append are obviously strict. Strictness of [map]
follows e.g. by Lemma 3, if we write its definition as

(fO) +n) + (D (@) +2n+1).

=1

Hence (1) and (2) are fulfilled. We still have to check (3). In the sequel %, ¢,
m, f are arbitrary values for the corresponding variables. Note that f ranges over

358

monotonic functionals. For rule (v) e.g. the check boils down to the true inequality
2-(20+k+2)+m+2>20+ (2k+m+2)+2. We don’t present all calculations
here, but let us yet verify the most difficult one, rule (vi):

[map(f, append(4, k))]
20+k+2
= > f@)+3-(28+k+2)+1
=0
I 20+1 204+k+2

= S f@+ Y f@+ Y, f@)+6e+3k+7
=0 i=0+1 1=20+42
£)4

k
> Z f@) + Z f@) + Zf(i) +6{+3k+5 because f is monotonic

1=0 =0 =0

1) k
= 2.0 f@) +3+ 1)+ (O] f(@) +3k+1) +2

1=0 1=0
= [append(map(f,£), map(f,k))]

For all rules, this relation between left- and right hand side hold. Therefore the
HRS under consideration is terminating.

3. Example: Higher order primitive recursion

We now apply this method to prove termination for the canonical rules associated
with higher order primitive recursion from Gddel’s T'. These are based on constants
Rec of type p — (0 = p = p) = 0 = p, for any type p.
Rec(g,h,0) — g,
Rec(g,h,s(z)) +— h(z,Rec(g, h, 7).
As ground domain we choose N with the usual addition + and the usual ordering

>. Then (1) is clearly satisfied. For (2) we choose a strict interpretation of the
constants Rec, as follows.

[Rec](g,h,0,X) = g(X)+S(g h,X)+1,
[Rec](g, h,n + 1,X) h(n, [Rec](g, h,n),X) + [Rec](g, h,n,X) + L.

I

The strictness of [Rec] can be seen as follows.

First we show that [Rec](g,h,n) for g,h € M and any n is monotonic, by
induction on n. Case 0. [Rec](g,h,0) is monotonic, since g is. Case n + 1.
[Rec](g, h,n + 1) is monotonic, since [Rec](g,h,n) and h are monotonic.

Hence we get [Rec] € M as follows. Let g, h,n,X € M. It suffices to show that
by decreasing these arguments in M in the sense of > the value [Rec](g, h, 7, X) will
get at most smaller. This clearly holds if n is decreased. For the other possibilities
we fix n. In the case n = 0 the claim is obvious, in case n + 1 we need the
monotonicity of [Rec](g,h,n).

359

Now we can show that [Rec] is strict. [Rec] € M has already been proved.
Let g,h,n,X € M. It remains to show that by decreasing exactly one of these
arguments in M in the sense of > the value [Rec](g, b, n,X) gets strictly smaller.
This again clearly holds if n is decreased. For the other possibilities we fix n and
use Lemma 3:

First note that [Rec](g, h,n,%) = S(g,h,X) +H(g, h,n,%), where H is defined
by

H(g,h,0,%) = 8(®)+1,
H(g,hn+1,%) = hn,S(gh) ®@H(ghn),%) +HEhn) +1

here we have written x @y for the functional which takes the value x(Z) +y(Z) on
Z. This can be proved easily by induction on n. Since H € M can be proved just
as we proved [Rec] € M above, it follows from Lemma 3 that [Rec](g, h,n,X) is
strict for fixed n. :

For the proof of (3) let us first consider the rule Rec(g, h,0) + g. We have to
show that for monotonic g, h,X we have

[Rec] (g, h, 0,%) > &(%)-

This holds because of the summand 1 in the first defining equation for [Rec]. For
the rule Rec(g, h, s(z)) + h(z,Rec(g, h, z)) we have to show that for monotonic
g,h,X we have

[Recl(g, h,n + 1,%) > h(n, [Rec](g, h, n),X).

This clearly holds because of the summand 1 in the second equation of the definition
for [Rec].

4. Example: Permutative Conversions

The next example comes from proof theory in the style of Prawitz. In [5] several
reductions are given, to bring proofs into a certain normal form. These are divided
in proper reductions and permutative COMVETSIONS. Strong normalization is then
proved via a refined notion of strong computability, strong validity. In [1] also
examples taken from proof theory occur. There a normalization proof is given via
hereditarily monotonic functionals, but the permutative conversions are not dealt
with. We also refer to [2] for another adaptation of Gandy’s approach, which can
be extended to the full calculus including permutative conversions (See [2, Exc.
2.C.10)). Instead of bounding reduction lengths by functionals, Girard uses the
length of a specific reduction path, given by a weak normalization theorem for the
full calculus.

We present a termination proof for the whole calculus, including the permutative

conversions. However, for simplicity we don’t include disjunction. We first reduce
the calculus with derivation terms to an HRS. Termination of this HRS is proved

360

using the method of Section 2. The translation to an HRS is such that termination
of the derivation terms immediately follows.

Definition. Derivation terms are defined simultaneously with the set of free as-
sumption variables (FA) occurring in them. We use A, B,C for formulae; d, e, f
for derivation terms; r,s for object terms; z,y for object variables and u,v for
assumption variables; ¢ ranges over 0, 1.

A (/\.’L‘ dA)V:cA,
?)\u“‘ {B)A~B provided z ¢ FV(B) for any uB € FA(d)
(dA—BoA)B (d7=Al)p) AT
<dA eB)A/\B (r, dA(T))amA(z)
Wi(éAO/\Al)Ai (ezu?.d3*4eB)B | provided x ¢ FV(B) and

z ¢ FV(C) for any v € FA(e) \ {u}.

We define FA(ezu.de) := FA(d) U (FA(e) \ {v}). In the other cases the set of free
assumption variables is defined as usual.

The following conversion rules are taken from [5]. The first four are the proper
reductions, the last four are called permutative conversions. Again i ranges over 0,
1.

(Aud)e — dlu = €] (ezu.de)f > ezu.d (ef)

mi{do, d1) — d; mi(ezu.de) — ezu.dm;(e)

(Azd)r —dz:=r1] (ezu.de)r > ezu.d (er)
ezu.((r,d)e) = elz,u :=r,d] exu.(eyv.de)f > ezu.deyv.ef

To translate this calculus into an HRS, we first have to transform formulae into
types. This is done by removing the dependencies on object terms, also called
collapsing. This technique is also used in [6, p. 560]. Collapsing A will be denoted
by A*. In the following definition, P is a predicate symbol.

P#)* =o
(A— B)* =A*— B*
(AAB)* =A*xB*

(3zA)* =ox A*
(VzA)* =o0— A*

Clearly, A* is a type for any formula A. The difference between implication and
quantification disappears. Existential quantifiers and conjunctions are translated
into product types.

The derivation terms are translated too. We introduce a new constant 3~
to model the e-construct. In the definition of a rewrite step, S-normalization is
performed implicitly. To avoid these implicit steps, we introduce another constant
I, to block the S-redexes. So for any type o (and 7) we have the following constants,
which make the signature of the HRS we are constructing:

I, 050 37, oxo—= (0209 T)>T

o,T

To describe the translation precisely, we extend the collapse function on derivation

361

terms:
W) =ut ;
O S o R et
o =@,y) i)
] (d‘v’z ,,.)* — o—-»A*(d*,T')

(Azd)* =Az°d* A 7,B\x - * -
(rd)* = (r,d*) (ezut.deB) =34 p.(d ,Azout.e*)
Cleé::rly (d4)* gives a term of type A* for any derivation term d. Due to the blocking
I,d cz{,nnot conjcain subterms M N, with M an assumption variable, an abstraction
or a pair. So d* is in f-normal form, even after substituting B-normal terms for free
assumption variables. Furthermore, it is easy to see that (dfu := €])* = d"[u := e*].

Finally, we present the rewrite rules of the HRS. These are all well typed in-
stances of the following schemata; i ranges over 0, 1.

I(z) » =z 1)

3, -((r,d),e) — e(r,d) (i1)

Irosr (35 0nr(die), f) = F5n(d 2200 Lor(e(z,), f) (iii)
7Ly xor Fpmoxer (6,6))) = T, (22 w0 Til Lo xo (e(2, 1)) (iv)
35 Fowe (@), f) = T (dha®wf 35 (e(z,4),) (v)

It is not difficult to check that if d — e for derivation terms d and e, then also
d* — e* with the rules just described. The first rule deals with proper reductions
for —, A and V; the second with the proper 3-reduction. The third takes care of
permutative conversions with — and V, the fourth with A and the last rule deals
with the permutative conversion for 3. We give as an example the proper —-
reduction. Consider the rewrite step (Aud)e — d[u := €. The first derivation term
translates to I(\ud*,e*). Now rule (i) is applicable. Literal replacement yields
(Aud*)e*, which has to be rewritten to B-normal form, due to the definition of a
rewrite step. This normal form is d*[u = €*], which is exactly the translation of
the second derivation term.

) Next we prove termination of the HRS, by carrying out the strategy of Sec-
tion 2. As domain we-(again) choose N (with standard order and addition). The

interpretation of I is defined by
[11(£,2) == S(f,2) +£(2) + L.

This is strict by Lemma 3, and clearly [I](X) >mon X for any monotonic x. This
already proves termination of the proper reduction rules for =, A and ¥ and in
particular of the simply typed lambda calculus with products. (Note however,
that we used the unique B-normal form of simply typed terms. In fact, weak
normalization suffices at meta-level.)

mutative conversions, it is more difficult to find

We first need auxiliary functionals A, of type
—eliminations. Here the value

Due to the presence of the per
a well-suited interpretation of 37.
o — o, which calculate the price of repeated — and X

362

of the blocking constant has to be taken into account. This leads to the following
definition:

A,(n) = n+1,
Aa—ﬂ (fa X) = AT(":I] (fa X)),
Apoxp (£,7) = A, ([I(f,1)), fori=0,1.

With induction on the type and using strictness of [I], one easily checks that A
is strict. Also A(xX) >mon X can be proved with induction. Let A™(x) denote the
n-fold application of A on x. We write x @ y for the functional which takes the
value x(Z) + y(Z) on Z. Now we can define

[35,)(d e) = AZ™ (e(mo(d), 87 @ m(d))).

Let us first explain the intuition behind this interpretation. Due to the §-rule
for 3~, we need a subterm e(mp(d), 71(d)). The summand S® is added to achieve
strictness in e. With a permutative conversion, the second argument of the 3~ gets
bigger. After an application of rule (iii), the argument f appears inside the 3-.
Note however, that the type of the involved 3~ goes down. So the value of an 3~ of
higher type has to count for the value of f, which is still raised by the value of the
blocking I. This explains the occurrence of A (which is defined by induction on the
types). The same intuition applies to rule (iv). The last permutative conversion
is still more involved. Here the type doesn’t go down. The only thing which goes
down is the left argument of the 3~-symbols involved. So the value of 3~ has
to weigh its first argument rather high, to compensate for the increasing second
argument. This explains the 25(4) in the previous definition.

Monotonicity of [3~] follows from monotonicity of A. Next strictness is proved.
Let e,f,x,y be monotonic. If x >¢; y, then by monotonicity of e, e(m(x),S &
m(x)) > e(mo(y), S®m (y)). Furthermore 25 > 25(), Because A (x) >mon X for
all x, it follows that [37](x,€) >mon [37](y,e). This proves strictness in the first
argument. Next, assume that e >4, f. Note that both my(x) and S@; (x) are strict
(the first is of base type, the second by Lemma 3). Hence e(mg(x),S & 71 (%)) >atr
f(mo(x),S @ m1(x)). Now [37](x,€) >mon [F~](x,f) follows from strictness of A.
This proves strictness in the second argument. Strictness in the next arguments
directly follows from strictness of A.

Now we verify condition (3) from Section 2 for the last three rules. First we
show this for the proper 3 -rule. Let r, d and e be monotonic. Then, using
A (X) >mon X for monotonic x, we get:

B1(r,d), €) >mon e(r, S®d) > e(r,d).

Hence, in any monotonic environment [37(r, d)e] >mon [erd]-

Next we verify the same relation for rules (iii) and (iv), permutative conversions
for —, V and A. These two rules can be written as:

I(37(d,e), f) = 37(d, Az u.I(e(z, w), f)),

363

where f is a term or 0 or 1 for the projections.

Let d,e, f,Z be monotonic. Put a := [37](d,e); b(x,u) := [I](e(x,u),f) and
¢ = e(mp(d),S @ m1(d)). Note that a > A(c) >mon ¢. We have to show that
[(a,£,2) > [371(d,b,2).

[N(af,2) = S(af,7)+a(f,7)+1
> [371(d,e,f,2)
= A”Y(Q)(f,2).

[E1d,b,2) = AT (b(mo(d),S ®mi(d)(2)

= AT([1](c,)(@).

So it suffices to prove that A" (c)(f) > A" ([I](c,f)). This is proved by induc-
tion on n. If n = 0, both terms are equal by definition of A. The successor case
uses that [I](x) >mon X, for all monotonic x:

An+2(c)(f) - A(A”"’l(c),f)
= A([II(A™(c),f)) by definition of A
> AAM()(D)
> AA"H([I](e, 1)) by H
= AP ([I](c, 1))

Finally, we have to prove condition (3) for the 373~ permutative conversion,
35+ Bpoxo(ds e),f) = 3,.(d,Az° v?.3; (e(z,u), f))-

Let d,e,f be monotonic. Put a := [37](d,e); b(x,u) := [37](e(x,u),f) and
¢ := e(mo(d), S @ (d)). We have to show that [37](a,f) >mon [37](d,b). Again
we have a > A(C) >mon €, 50 S(a) > S(c). From the left hand side of the rule it is
clear that a is of product type. Hence, S(a) = a(0)+S(a(1)). Because S(a(1)) >0,
we obtain S(a) > a(0) = A2°“(c)(0) > 25(@ > S(d) + 1. Hence

QS(ya) > 2max{S(d)+1,S(c)}+1 >1+ QS(d) +2S(c)_

Now we can computer
ERICE) AP (£(m0(a), S @ m(a)))

Smon AT (A2 (£(m0(2), S © 1 (a))))

A (AT (£(mo(c),S @ m1(0)))

= ATY(E D)

A (b(mo(d), S ©@m(d))

[271(d,b).

1l

We have shown that for all rules, the left hand side is greater than the right
hand side. Hence the HRS is terminating. This directly implies termnfatlon for the
calculus with derivation terms presented at the beginning of this section.

364

References

(1]

Robin O. Gandy. Proofs of strong normalization. In J.P. Seldin and J.R. Hind-
ley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 457-477. Academic Press, 1980.

Jean-Yves Girard. Proof Theory and Logical Complezity. Bibliopolis, Napoli,
1987.

Gerard Huet and Derek Oppen. Equations and rewrite rules — a survey. In
Formal Language Theory — Perspectives and Open Problems, pages 349-405.
Academic Press, 1980.

Tobias Nipkow. Orthogonal higher-order rewrite systems are confluent. In
M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications,
volume 664 of Lecture Notes in Computer Science, pages 306-317, Berlin, 1993.
Springer.

Dag Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Pro-
ceedings of the Second Scandinavian Logic Symposium, pages 235-307. North—
Holland, Amsterdam, 1971.

Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics. An
Introduction, volume 121, 123 of Studies in Logic and the Foundations of Math-
ematics. North-Holland, Amsterdam, 1988.

Jaco van de Pol. Termination proofs for higher-order rewrite systems. In
J. Heering, K. Meinke, B. Méller, and T. Nipkow, editors, Higher~Order Al-
gebra, Logic and Term Rewriting (HOA ’93), volume 816 of Lecture Notes in
Computer Science, pages 305-325, Berlin, 1994. Springer.

Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting.
PhD thesis, Vrije Universiteit, Amsterdam, 1994.

