Skip to main content

Combining algebra and universal algebra in first-order theorem proving: The case of commutative rings

  • Invited Papers
  • Conference paper
  • First Online:
Recent Trends in Data Type Specification (ADT 1994, COMPASS 1994)

Abstract

We present a general approach for integrating certain mathematical structures in first-order equational theorem provers. More specifically, we consider theorem proving problems specified by sets of first-order clauses that, contain the axioms of a commutative ring with a unit element. Associative-commutative superposition forms the deductive core of our method, while a convergent rewrite system for commutative rings provides a starting point for more specialized inferences tailored to the given class of formulas. We adopt ideas from the Gröbner basis method to show that many inferences of the superposition calculus are redundant. This result is obtained by the judicious application of the simplification techniques afforded by convergent rewriting and by a process called symmetrization that embeds inferences between single clauses and ring axioms.

The research described in this paper was supported in part by the NSF under research grant INT-9314412, by the German Ministry for Research and Technology (Bundesministerium für Forschung und Technologie) under grant, ITS 9102/ITS 9103 and by the ESPRIT Basic Research Working Group 6112 (COMPASS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • L. Bachmair and N. Dershowitz, 1986. Commutation, transformation, and termination. Proc. 8th Conf. on Automated Deduction, San Diego, CA, LNCS 230, pp. 5–20. Springer.

    Google Scholar 

  • L. Bachmair and H. Ganzinger, 1993. Associative-commutative superposition. Technical Report MPI-I-93-267, Max-Planck-Institut für Informatik, Saarbrücken. To appear in Proc. CTRS Workshop 1994.

    Google Scholar 

  • L. Bachmair and H. Ganzinger, 1994a. Buchberger's algorithm: A constraint-based completion procedure. Proc. 1st Int. Conf. on Constraints in Computational Logics, Munich, Germany, LNCS 845, pp. 285–301. Springer.

    Google Scholar 

  • L. Bachmair and H. Ganzinger, 1994b. Ordered chaining for total orderings. Proc. 12th Int. Conf. on Automated Deduction, Nancy, France, LNCS 814, pp. 435–450. Springer.

    Google Scholar 

  • L. Bachmair and H. Ganzinger, 1994c. Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation4(3): 217–247. Revised version of Technical Report MPI-I-93-250, Max-Planck-Institut für Informatik, Saarbrücken, 1993.

    Google Scholar 

  • L. Bachmair and D. Plaisted, 1985. Termination orderings for associative-commutative rewriting systems. Journal of Symbolic Computation1: 329–349.

    Google Scholar 

  • L. Bachmair, H. Ganzinger and U. Waldmann, 1994. Refutational theorem proving for hierarchic first-order theories. Applicable Algebra in Engineering, Communication and Computing5(3/4): 193–212. Earlier version: Theorem Proving for Hierarchic First-Order Theories. Proc. 3rd Int. Conf. on Algebraic and Logic Programming, Volterra, Italy, LNCS 632. Springer, 1992.

    Google Scholar 

  • L. Bachmair, 1991. Canonical Equational Proofs. Birkhäuser, Boston.

    Google Scholar 

  • R. S. Boyer and J. S. Moore, 1988. Integrating decision procedures into heuristic theorem provers: A case study of linear arithmetic. In J. E. Hayes, D. Michie and J. Richards (eds), Machine Intelligence 11, chapter 5, pp. 83–124. Clarendon Press, Oxford.

    Google Scholar 

  • B. Buchberger and R. Loos, 1983. Algebraic simplification. Computer Algebra: Symbolic and Algebraic Computation, 2nd edn, pp. 11–43. Springer.

    Google Scholar 

  • B. Buchberger, 1965. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Ideal, PhD thesis, University of Innsbruck, Austria. In german.

    Google Scholar 

  • B. Buchberger, 1985. Gröbner bases: An algorithmic method in polynomial ideal theory. In N. K. Bose (ed.), Recent Trends in Multidimensional Systems Theory, chapter 6, pp. 184–232. D. Reidel Publishing Company.

    Google Scholar 

  • B. Buchberger, 1987. History and basic features of the critical pair/completion procedure. Journal of Symbolic Computation3: 3–38.

    Google Scholar 

  • H.-J. Bürckert, 1990. A resolution principle for clauses with constraints. Proc. 10th Int. Conf. on Automated Deduction, Kaiserslautern, Germany, LNCS 449, pp. 178–192. Springer.

    Google Scholar 

  • N. Dershowitz and J.-P. Jouannaud, 1990. Rewrite systems. In J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Vol. B: Formal Models and Semantics, chapter 6, pp. 243–320. Elsevier/MIT Press.

    Google Scholar 

  • A. Kandri-Rody and D. Kapur, 1988. Computing a Gröbner basis of a polynomial ideal over a euclidean domain. Journal of Symbolic Computation6: 19–36.

    Google Scholar 

  • C. Kirchner, H. Kirchner and M. Rusinowitch, 1990. Deduction with symbolic constraints. Revue Française d'Intelligence Artificielle4(3): 9–52. Special issue on automatic deduction.

    Google Scholar 

  • P. Le Chenadec, 1984. Canonical forms in finitely presented algebras. Proc. 7th Int. Conf. on Automated Deduction, Napa, CA, LNCS 170, pp. 142–165. Springer. Book version published by Pitman, London, 1986.

    Google Scholar 

  • R. Loos, 1981. Term reduction systems and algebraic algorithms. Proc. 5th GI Workshop on Artificial Intelligence, Bad Honnef, Informatik Fachberichte 47, pp. 214–234. Springer.

    Google Scholar 

  • G. Marché, 1994. Normalised rewriting and normalised completion. Proc. 9th Ann. IEEE Symp. on Logic in Computer Science, Paris, pp. 394–403. IEEE Computer Society Press.

    Google Scholar 

  • G. Nelson and D. C. Oppen, 1979. Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems2(2): 245–257.

    Article  Google Scholar 

  • R. Nieuwenhuis and A. Rubio, 1994. AC-supeiposition with constraints: no AC-unifiers needed. Proc. 12th Int. Conf. on Automated Deduction, Nancy, France, LNCS 814, pp. 545–559. Springer.

    Google Scholar 

  • S. Owre, J. M. Rushby and N. Shankar, 1992. PVS: A prototype verification system, 11th Int. Conf. on Automated Deduction, Saratoga Springs, NY, LNCS 607, pp. 748–752. Springer.

    Google Scholar 

  • G. E. Peterson and M. E. Stickel, 1981. Complete sets of reductions for some equational theories. Journal of the ACM28(2): 233–264.

    Article  Google Scholar 

  • L. Vigneron, 1994. Associative-commutative deduction with constraints. Proc. 12th Int. Conf. on Automated Deduction, Saratoga Springs, NY, LNCS 814, pp. 530–544. Springer.

    Google Scholar 

  • U. Wertz, 1992. First-order theorem proving modulo equations. Technical Report MPI-I-92-216, Max-Planck-Institut für Informatik, Saarbrücken.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Egidio Astesiano Gianna Reggio Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bachmair, L., Ganzinger, H., Stuber, J. (1995). Combining algebra and universal algebra in first-order theorem proving: The case of commutative rings. In: Astesiano, E., Reggio, G., Tarlecki, A. (eds) Recent Trends in Data Type Specification. ADT COMPASS 1994 1994. Lecture Notes in Computer Science, vol 906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0014420

Download citation

  • DOI: https://doi.org/10.1007/BFb0014420

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59132-0

  • Online ISBN: 978-3-540-49198-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics