Skip to main content

Using the visibility complex for radiosity computation

  • Submitted Contributions
  • Conference paper
  • First Online:
Applied Computational Geometry Towards Geometric Engineering (WACG 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1148))

Included in the following conference series:

Abstract

The radiosity method is particularly suitable for global illumination calculations in static environments. Nonetheless, for applications of image synthesis such as lighting design or architectural simulation, we have to deal with dynamic environments. To make the method usable in a real case, the illumination has to be updated as fast as possible after an object moves. The efficient way is to find the calculations strictly necessary to be recomputed after a change in the scene. The largest part of the computation time is spent on visibility calculation. In this paper, we investigate the possible speed ups in those calculations. We propose the use of the visibility complex for radiosity calculations. The presented study is realized for 2D scenes of convex objects in the static case. We show that the visibility complex is very suitable for radiosity calculations in this context, and that it also allows for efficient updates in the dynamic case.

IMAGIS is a joint project of CNRS, INRIA, Institut National Polytechnique de Grenoble and Université Joseph Fourier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daniel R. Baum, John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. The back-buffer algorithm: An extension of the radiosity method to dynamic environments. The Visual Computer, 2(5):298–306, September 1986.

    Article  Google Scholar 

  2. Shenchang Eric Chen. Incremental radiosity: An extension of progressive radiosity to an interactive image synthesis system. In Forest Baskett, editor, Computer Graphics (SIGGRAPH'90 Proceedings), volume 24, pages 135–144, August 1990.

    Google Scholar 

  3. F. Durand. Etude du complexe de visibilit. Rapport du DEA d'Informatique de Grenoble, France, June 1995.

    Google Scholar 

  4. F. Durand and C. Puech. The visibility complex made visibly simple. In Proc. 11th Annu. ACM Sympos. Comput. Geom., page V2, 1995.

    Google Scholar 

  5. David W. George, Francois X. Sillion, and Donald P. Greenberg. Radiosity redistribution for dynamic environments. IEEE Computer Graphics and Applications, 10(4):26–34, July 1990.

    Article  Google Scholar 

  6. C. Goral, K. E. Torrance, and D. P. Greenberg. Modeling the interaction of light between diffuse surfaces. In Computer Graphics (SIGGRAPH'84 Proceedings), 18:3, pages 213–222, July 1984.

    Article  Google Scholar 

  7. S. J. Gortler, P. Schroder, M. F. Cohen, and P. Hanrahan. Wavelet radiosity. In Computer Graphics (SIGGRAPH'93 Proceedings), pages 221–230, August 1993.

    Google Scholar 

  8. P. S. Heckbert. Simulating Global Illumination Using Adaptive Meshing. PhD thesis, UC Berkeley, June 1991.

    Google Scholar 

  9. P. S. Heckbert. Radiosity in flatland. In Computer Graphics forum (EURO-GRAPHICS'92 Proceedings), 11:3, pages 181–192, September 1992.

    Article  Google Scholar 

  10. N. Holzschuch, F. Sillion, and G. Drettakis. An efficient progressive refinement strategy for hierarchical radiosity. In Fifth Eurographics Workshop on Rendering, Darmstadt, Germany, pages 343–357, June 1994.

    Google Scholar 

  11. H. C. Hottel. Radiant heat transmission. In W. H. McAdams, editor, Heat Transmission, chapter 4. McGraw-Hill, New-York, 3rd edition, 1954.

    Google Scholar 

  12. M. Pocchiola and G. Vegter. Sweep algorithm for visibility graphs of curved obstacles. Manuscrit, Liens, Ecole Norm. Sup., Paris, June 1993.

    Google Scholar 

  13. M. Pocchiola and G. Vegter. The visibility complex. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 328–337, 1993.

    Google Scholar 

  14. M. Pocchiola and G. Vegter. Computing the visibility graph via pseudotriangulation. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 248–257, 1995.

    Google Scholar 

  15. S. Rivière. Topologically sweeping the visibility complex of polygonal scenes. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages C36–C37, 1995.

    Google Scholar 

  16. S. Rivière. Dealing with degeneracies and numerical imprecisions when computing visibility graphs. 12th European Workshop on Computational Geometry CG'96, Muenster, Germany, 1996.

    Google Scholar 

  17. S. Rivire. Experimental comparison of two algorithms for computing visibility graphs. Manuscrit, 1993.

    Google Scholar 

  18. L. A. Santalo. Integral Geometry and Geometric Probability, volume 1 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Company, 1976.

    Google Scholar 

  19. M. Sbert. An integral geometry based method for fast form-factor computation. In Computer Graphics forum (EUROGRAPHICS'93 Proceedings), 12:3, pages 409–420, September 1993.

    Article  Google Scholar 

  20. P. Schroeder, S. Gortler, M. Cohen, and Pat Hanrahan. Wavelet projections for radiosity. In Proc. 4th Eurographics Workshop on Rendering, Paris, France, pages 105–114, June 1993.

    Google Scholar 

  21. E. S. Shaw. Hierarchical radiosity for dynamic environments. Master's thesis, Cornell University, August 1994.

    Google Scholar 

  22. F. X. Sillion and C. Puech. Radiosity and Global Illumination. Morgan Kaufmann Publishers, Inc., 1994.

    Google Scholar 

  23. S. J. Teller. Visibility Computations in Densely Occluded Polyhedral Environments. PhD thesis, UC Berkeley, 1992.

    Google Scholar 

  24. S. J. Teller and P. M. Hanrahan. Global visibility algorithms for illumination computations. In Computer Graphics (SIGGRAPH'93 Proceedings), pages 239–246, August 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ming C. Lin Dinesh Manocha

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orti, R., Durand, F., Rivière, S., Puech, C. (1996). Using the visibility complex for radiosity computation. In: Lin, M.C., Manocha, D. (eds) Applied Computational Geometry Towards Geometric Engineering. WACG 1996. Lecture Notes in Computer Science, vol 1148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0014495

Download citation

  • DOI: https://doi.org/10.1007/BFb0014495

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61785-3

  • Online ISBN: 978-3-540-70680-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics