Skip to main content

Sets in types, types in sets

  • Session 7
  • Conference paper
  • First Online:
Theoretical Aspects of Computer Software (TACS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1281))

Included in the following conference series:

Abstract

We present two mutual encodings, respectively of the Calculus of Inductive Constructions in Zermelo-Fraenkel set theory and the opposite way. More precisely, we actually construct two families of encodings, relating the number of universes in the type theory with the number of inaccessible cardinals in the set theory. The main result is that both hierarchies of logical formalisms interleave w.r.t. expressive power and thus are essentially equivalent. Both encodings are quite elementary: type theory is interpreted in set theory through a generalization of Coquand's simple proof-irrelevance interpretation. Set theory is encoded in type theory using a variant of Aczel's encoding; we have formally checked this last part using the Coq proof assistant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Aczel. The Type Theoretic Interpretation of Constructive Set Theory. Logic Colloquium 77, Macintyre, Pacholsky and Paris (editors), Springer, 1977.

    Google Scholar 

  2. P. Aczel. The Type Theoretic Interpretation of Constructive Set Theory: Choice Principles. In The L. E. J. Brouwer Centenary Symposium, A. S. Troelstra and D. van Dalen (editors), North-Holland, 1982.

    Google Scholar 

  3. P. Aczel. The Type Theoretic Interpretation of Constructive Set Theory: Inductive Definitions. Proceedings of Methodology and Philosophy of Sciences, 1985.

    Google Scholar 

  4. T. Altenkirch. Constructions, Inductive Types and Strong Normalization. Ph.D. Thesis, University of Edinburgh, 1993.

    Google Scholar 

  5. H. Barendregt. Lambda Calculi with Types. In Handbook of Logic in Computer Science, Vol II, Elsevier, 1992 6. B. Barras et al. The Coq Proof Assistant Reference Manual, Version 6.1. INRIA Technical Report, 1996.

    Google Scholar 

  6. A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 5 (1), pp. 56–68, 1940.

    Google Scholar 

  7. T. Coquand. An Analysis of Girard's Paradox. Proceeding of LICS, IEEE press, 1985.

    Google Scholar 

  8. T. Coquand. Metamathematical Investigations of a Calculus of Constructions. In P. Oddifredi (editor), Logic and Computer Science. Academic Press, 1990. Rapport de recherche INRIA 1088.

    Google Scholar 

  9. T. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Löf et G. Mints (editors), Proceedings of Colog'88. Springer-Verlag, LNCS 417, 1990.

    Google Scholar 

  10. P. Dybjer. Inductive sets and families in Martin-Löf's type theory and their settheoretic semantics. In G. Huet and G. Plotkin (editors), Logical Frameworks, Cambridge University Press, 1991.

    Google Scholar 

  11. J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur, Thése d'Etat, Université Paris 7, 1972.

    Google Scholar 

  12. D. Howe. On Computational Open-Endedness in Martin-Löf's Type Theory. Proceedings of LICS, 1991.

    Google Scholar 

  13. J.-L. Krivine. Théorie Axiomatique des Ensembles, Presses Universitaires de France, 1969.

    Google Scholar 

  14. K. Kunen. Set Theory, An Introduction-Independence Proofs, North-Holland, 1980.

    Google Scholar 

  15. Z. Luo. An Extended Calculus of Constructions. Ph.D. Thesis, University of Edinburgh, 1990.

    Google Scholar 

  16. P. Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory, Bibliopolis, 1984.

    Google Scholar 

  17. P.-A. Melliés and B. Werner. A Generic Normalization Proof for Pure Type Systems. Submitted and vailable on http://pauillac.inria.fr/-Werner/, 1996.

    Google Scholar 

  18. J. C. Reynolds. Polymorphism is not Set-theoretic. Proceedings Int. Symp. on Semantics of Data Types, Sophia-Antipolis, LNCS 173, Springer, 1984.

    Google Scholar 

  19. P. Taylor. Intuitionistic Sets and Ordinals. Journal of symbolic Logic, 61(3), pp. 705–744, 1996.

    Google Scholar 

  20. B. Werner. An Encoding of ZFC Set Theory in Coq. Coq proof-file, available on http: //pauillac. inria. f r/ Werner/ or as part of Coq distribution, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martín Abadi Takayasu Ito

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Werner, B. (1997). Sets in types, types in sets. In: Abadi, M., Ito, T. (eds) Theoretical Aspects of Computer Software. TACS 1997. Lecture Notes in Computer Science, vol 1281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0014566

Download citation

  • DOI: https://doi.org/10.1007/BFb0014566

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63388-4

  • Online ISBN: 978-3-540-69530-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics