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Abst rac t .  The problem of systematically synthesizing hybrid controllers 
that satisfy multiple requirements is considered. We present a technique, 
based on the principles of optimal control, for determining the class of 
least restrictive controllers that satisfy the most important requirement 
(which we refer to as safety). The system performance with respect to 
the lower priority requirement (which we refer to as efficiency) can then 
be optimized within this class. We motivate our approach by three exam- 
ples, one purely discrete (the problem of reachability in finite automata) 
o n e  hybrid (the steam boiler problem) and one primarily continuous (a 
flight vehicle management system). 

1 I n t r o d u c t i o n  

In this paper we concentrate on the problem of controlling hybrid systems, that 
is "steering" them using continuous and discrete inputs in an at tempt  to ensure 
that  the system behavior satisfies certain requirements. For most real systems 
multiple requirements are imposed on the design. For example, for purely discrete 
systems the requirements usually considered are those of safety (encoded by re- 
quirements over the finite runs of the system) and liveness or fairness (encoded by 
requirements over the infinite runs), while for conventional control problems the 
requirements considered are usually safety (encoded by stability or constraints 
on the system trajectories) and efficiency (the requirement for small inputs or 
bounds on the speed of convergence for example). In such a multi-objective set- 
ting some of the requirements are usually assumed to be more important  than 
others, either explicitly or implicitly. This priority is important  from the point 
of view of controller synthesis, as one would like to ensure that high priority 
specifications are not violated in favor of low priority ones. 

We present a methodology for designing hybrid controllers for hybrid systems 
in such a multi-objective setting. For simplicity we restrict our attention to two 
performance criteria and will use safety to refer to the high priority criterion 
and efficiency to refer to the low priority one. Using optimal control tools we 
at tempt  to classify the controllers that can be used to guarantee safety. Efficiency 
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can then be optimized within this class of least restrictive safe controls. The 
resulting controller will typically be hybrid (even if the plant dynamics are purely 
continuous) as it involves switching between the safe and efficient controllers. 

Our analysis is based on the hybrid system model introduced in [1], which 
is outlined in Section 2. The theoretical framework (presented in Section 3) 
is motivated by three examples. The first is purely discrete and involves the 
control of finite automata,  The second is the well known steam boiler benchmark 
problem [2]. This is a hybrid problem in that a continuous process (the level of 
water in the boiler) is to be controlled using discrete controls (pumps being 
switched on and off). Finally, the third example is continuous and is motivated 
by the design of a flight vehicle management system. 

2 H y b r i d  S y s t e m  M o d e l i n g  

The basic entity of our models will be the hybrid dynamical system or hybrid au- 
tomaton (the terms will be used interchangeably). Hybrid automata  are conve- 
nient abstractions of systems with phased operation and they appear extensively 
in the literature [3, 4, 5, 6]. The model we consider will be similar to models 
used primarily in computer science; we take an input /output  approach, along 
the lines of the reactive module paradigm [7]. For an overview of hybrid models 
from the dynamical systems point of view see [8]. 

We consider a finite collection of variables of two distinct kinds, discrete and 
continuous. A variable is called discrete if it takes values in a countable set and 
it is called continuous otherwise. We will assume no special algebraic structure 
for the values of the discrete variables. The only operations we will allow are 
assigning a value to a variable and checking whether the value of a variable and 
a member of the value set (or the values of two variables that take values in the 
same set) are equal. We assume that  continuous variables take values in subsets 
of It( n for some value of n. The variables in our model will be split into three 
classes: inputs, outputs and states. We will denote the input space (set where the 
input variables take values) by U = UD • Uc, the output space by Y --= YD • Yc  
and the state space by X -- XD x X c .  The subscripts D and C indicate whether 
the variable is discrete or continuous. To avoid unnecessary subscripts we denote 
an element of U by u, an element of Y by y and an element of X by (q, x). To 
simplify the notation we will omit XD and q when there is only one discrete 
state and X c  and x when there are no continuous states. 

Our model evolves in continuous time, so we will assume a set of times of 
interest of ~he form T = [ti, t/] C ~. The variables will evolve either continuously 
as a function of time or in instantaneous jumps. Therefore the evolution of the 
system will be over sets of the form: 

7" = {[T~,~'I][w~, w21,... [7-~_1, ~'n]} (1) 

with q E T for all i, ~-~ = ti,~-n = ty and ~-i = 7:[ < ~'i+1 for all i = 1, 2 , . . .  ,n  - 1. 
The implication is that  ~-i are the times at which discrete jumps of the state or 
input occur. We will use 7- to denote an element of T .  
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D e f i n i t i o n  1 A h y b r i d  d y n a m i c a l  s y s t e m ,  H ,  is a collection ( X ,  U, Y ,  
I ,  f ,  E ,  h), with X = X D x X c ,  V ~- UD x U c ,  Y : YD x Y c ,  I C X ,  

f : X • U --* T X c ,  E C X • U x X and h : X x U ~ Y .  X o , U c , Y c  
are respectively open subsets of IR n , ~m , ]~p , for some finite values of n, m,  p and 
XI ) ,  UD, YD are countable sets. 

Here T X c  represents the tangent space of the space X c .  We assume that  f is 
time invariant 2 and satisfies the standard existence-uniqueness assumptions. 

D e f i n i t i o n  2 A r u n  of the hybrid dynamical system H over an interval T = 
[ti, tf] consists of a collection (% q, x, y, u) with T E 7-, q : T --~ X D ,  x : T ~ X C ,  

y : ~- --~ Y and u : r --* U which satisfies the following properties: 

1. In i t i a l  C o n d i t i o n :  (q(T~),x(~-~)) C I .  
2. D i s c r e t e  E v o l u t i o n :  (q(~-i), x(Ti), u(Ti), q(T~), x(T~)) e E ,  for all i. 
3. C o n t i n u o u s  E v o l u t i o n :  for all i with 7~ < vi+t and for all t E [~-[,7i+t]: 

= q(t)  = q ( T S ,  �9 E 

4. O u t p u t  E v o l u t i o n :  for all t �9 % y(t)  = h(q(t) ,  x(t), u(t)) .  

It can be shown [1] that the definitions introduced here are rich enough to 
model continuous dynamical systems, finite state systems, rectangular automata,  
autonomous jumps, controlled jumps, etc. Note that the set E summarizes the 
information contained in the invariants, the transition guards and the transition 
reset relations that appear in the hybrid models of [3, 4, 5]. 

A number of operations can be defined on hybrid dynamicM systems [1]. 
Here we restrict our attention to just one, called interconnection, which allows 
us to form new hybrid systems out of collections of existing ones. Let {Ui}i=lg 

be a collection of hybrid automata,  Hi = { X i ,  Ui, Yi, Ii ,  f i ,  Ei ,  hi}.  We can write 
the inputs and outputs in vector form as ui = [ui,1 . . .  Ui,m~] T E Ui and 
Yi = [Yi,1 . . .  Yi,p,] T �9 Yi.  Let: 

(f  = { ( 1 , 1 ) , ( 1 , 2 ) , . . . , ( 1 , m l ) , ( 2 , 1 ) , . . . , ( 2 ,  m 2 ) , . . . , ( N ,  1 ) , . . . , ( g ,  m N ) }  

? = {(1,1), (1, 2), . . . ,  (1, pl), (2,1) , . . . ,  (2,v2), . . . ,  (N, 1) , . . . ,  (N, pN)} 

D e f i n i t i o n  3 A n  i n t e r c o n n e c t i o n ,  Z, of a collection of hybrid automata is a 
partial map Z : (f ~ Y .  

An interconnection of hybrid automata  can be thought of as a pairing ( u i j ,  Yk,l) 
of inputs and outputs. An interconnection is only a partial map (some inputs 
may be left free), need not be surjective (some outputs may be left free) and 
need not be injective (an output  may be paired with more than one input). Let 
Pre (Z )  be the subset of ~; for which the partial map 27 is defined and let Ha 
denote the projection of a vector valued quantity to the element with index a. 

2 With some additional notation the same definitions can be given in terms of the 
flow of the vector field. The advantage would be that the definitions would directly 
extend to time varying vector fields, discrete time systems, etc. 
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D e f i n i t i o n  4 Given a collection of hybrid automata {Hi} N and an intercon- 
nection :[, the symbolic operation s u b s t i t u t i o n ,  denoted by ~.* , assigns to each 
input, ui,j, a map on X1 • . . .  • XN  • U1 • . . .  x Ujv, according to: 

ui,j if ( i , j )  r Pre(Z) 
u<y ~.z hz(i,j) : XIIl(Z(<i)) • Uul(z(<j)) --* Yul(z(<i)) if ( i , j )  E Pre(ff) 

If for all ( i , j )  6 Pre(ff),  YZ(i,j) C Ui,j, operation ~ can be repeatedly applied 
to the right hand side by appropriate map compositions. The construction ter- 
minates for each ul,j if the right hand side either contains u<j itself or contains 
only Ukj • Pre(ff). The resulting map will be denoted by (ui,j ~.z*). 

Because there are a finite number of inputs, the construction of (Ui, j ~'-~*) ter- 
minates in a finite number of steps. To ensure that  an interconnection is well 
defined as an operation between hybrid automata we impose the following tech- 
nical conditions: 

D e f i n i t i o n  5 An interconnection, if, of a collection of hybrid dynamical sys- 
{Hi}i=1, is well  p o s e d  if for all ( i , j )  6 Pre( I ) ,  YI(i,j) C Ui,j and there terns, N 

are no algebraic loops, i.e. for all ( i , j )  6 Pre(ff) the map (u<j ~.~*) does not 
involve u<j. 

Fac t  1 Every well posed interconnection, 5[, of a collection of hybrid dynamical 
{Hi}i=1, defines a new hybrid dynamical system. systems~ N 

3 M u l t i o b j e c t i v e  C o n t r o l l e r  D e s i g n  

We assume that the plant is modeled by a hybrid automaton of the form de- 
scribed in Section 2. We further divide the inputs into two classes, control in- 
puts denoted by u and disturbances denoted by d. The input space is accord- 
ingly split into two subspaces, (u,d) C U • D. The interpretation is that  the 
designer can exercise control over the inputs u but not over the disturbances. 
Let P C  denote the space of piecewise continuous and P C  1 the space of piece- 
wise differentiable functions of the reals and define the set of acceptable inputs 
by b/ = {u 6 PClu( t  ) 6 U Vt} and the set of acceptable disturbances by 
7) = {d 6 PCld(t)  e D Vt}. 

The controller design should be such that the desired performance is achieved 
despite the actions of the disturbances. We are interested in a situation where 
more than one requirement is imposed on the system performance. Here for 
simplicity, we restrict our attention to the case of two requirements, which we 
refer to as safety and efficiency. We assume that these requirements can be 
encoded by a pair of cost functions, J1 and J2 respectively, on the runs of the 
hybrid automaton with Ji : P C  x P C  1 x /4  x T) -~ ]K The cost functions map 
a run of the automaton (q(), x0 ,  u0 ,  d0)  to a real number. Here we restrict our 
attention to the case where each pair of inputs (u, d) generates a unique state 
trajectory for a given initial condition (q~176 We informally refer to hybrid 
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automata  that possess this property as deterministic hybrid automata. In this 
case the cost function can be thought of as a map: 

J i : / x L / x T )  ,[~ (2) 

To distinguish acceptable from unacceptable runs we can impose thresholds, C1 
and C2, on the final costs. A run is acceptable if Ji(qO, x0 ,  u0 ,  d0)  _< C/ for 
i = 1,2. We also assume that the performance criteria come with an implicit 
ranking, safety being more important than efficiency. 

In order to guarantee that  the performance specifications are met despite the 
action of the disturbances we cast the design problem as a zero sum dynamic 
game. The two players in the game are the control u and the disturbance d and 
they compete over the cost functions J1 and J2. We seek to determine the best 
possible control action and the worst possible disturbance. If the performance 
specifications are met for this pair, then they can also be met for any other 
choice of the disturbance. 

As higher priority is given to safety, the game for J1 is solved first. If we 
assume that  the game accepts a saddle solution, i.e. there exist input and dis- 
turbance trajectories, u~ and d~ such that: 

j~ (q0, x 0) = max min J1 (qO, x 0 ' u, d) = min max J1 (q0, x 0, u, d) = J1 (q0, x 0, u~, d~) 
dE'D uEU uELr dE'D 

then the set V1 = {(q,x) e XIJ~(q,x) < Cl} contains all states for which 
there exists a control such that the objective on J1 is satisfied for any allowable 
disturbance. If u~' is used as a control law it will guarantee that  ,/1 is minimized 
for the worst possible disturbance and, moreover, if the initial state is in V1 it 
will also guarantee that  the safety requirement is satisfied. 

u~ however does not take into account the requirements on J2. To include 
efficiency in the design let L/l(q ~ x ~ = {u C LtIJ~(q ~ x ~ u, d~) <_ C1}. Clearly: 

{ ~ 0  for (q~176 C- V1 
Ul(q~176 O for (q~176 C V1, a s  U~ e Ul(q~ ~ 

5/1 can be thought of as a feedback map 5/1 : X ~ 2 U, that  maps to each state 
the subset of admissible controls which guarantees that the requirement on J1 is 
satisfied; in other words, the least restrictive class of safe controls. Within this 
class we would now like to select the control that minimizes the cost function 
J2. We again pose the problem as a zero sum dynamic game. Assume that  a 
saddle solution (u~, d~) exists and let j~(qO, x o) be the corresponding cost. Then 
the set V~ = {(q, x) E XIJ~(q,.v) <_ C2} contains the initial conditions for which 
there exists a control such that for any allowable disturbance the requirements 
on both J1 and J2 are satisfied. As the minimax problem can only be posed when 
/41(q~ i)) r 0 we assume that  V2 C V1. The control law u~ and the set V2 are 

= 7-Ix~ u* d) < Ci. such tha t fora l l (q~176  1 , 2 , ~  , 2, - 
Note that as V2 C V1 there may still be states for which the requirement for 

safety can be satisfied whereas that  for efficiency can not. The controller can be 
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extended to these states using the simple switching scheme: 

u* (q, x) = J" u~ (q, x) if (q, x) e V2 
[u~ (q ,x )  i f (q ,x )  c X \ V 2  (3) 

This makes the operation of the controller hybrid, even in the case where the 
plant is purely continuous. Such an extension may be particularly useful when 
one is trying to design a fault to]erant controller. The occurrence of a fault 
significantly alters the dynamics and may lead to severe shrinking of the set V2. 
In cases like these one would like to resort to a controller that  guarantees safety, 
even if the requirements for efficiency are violated. 

Two special cases of the above algorithm deserve explicit mention. The first 
is the case in which there is no disturbance. The algorithm then calls for the 
solution to a pair of optimal control problems (rather than games). The optimal 
solution for J1 will produce a set of states and classify the least restrictive set 
of controllers for which the safety requirement can be satisfied. The optimal 
control problem for J2 will then at tempt to determine the best possible control 
in terms of efficiency within this class. Application of this special case will be 
demonstrated in Section 6 on the flight vehicle management system example. 
The second special case is one where there is no control. This is for example the 
case when a controller has already been designed and we are asked to verify its 
operation or determine the sets of initial conditions for which the specifications 
are satisfied. The verification problem also reduces to a pair of optimal control 
problems. For further discussion of this special case the reader is referred to [9]. 

4 R e a c h a b i l i t y  i n  F i n i t e  A u t o m a t a  

Consider a standard, deterministic finite automaton G = (Q, Z ,  ~, Q0) where Q 
is a finite set of states, Z a finite set of events, 8 : Q x Z --~ Q a transition 
relation and Q0 c Q a set of initial states. Let L(G) denote the string of events 
(language) generated/accepted by G. Following [10] we assume that  the set of 
events is partitioned into two disjoint subsets, Z = ~Uu U Zc, where the events 
in Zc are controllable (in the sense that they can be disabled) while the events 
in Z~ are uncontrollable. In this setting problems of safety are usually cast as 
questions of reachability: can the designer ensure that the automaton state will 
stay away from a "bad" set of states QB C Q. Efficiency typically corresponds 
to questions of fairness or liveness. The distinction made is that  safety questions 
can be decided by reasoning over strings of finite length in L(G) while questions 
of fairness require reasoning over infinite strings. For our example we will only 
consider how teachability questions can be addressed using the techniques of 
Section 3. 

We first cast the finite automaton G into the modeling formalism of Section 
2. In the set up [10], uncontrollable events are given "priority" over controllable 
ones, in the sense that they can always take place independent of the action of the 
controller. To capture this effect (and motivated by a discussion in [5]) we assume 
that  the evolution of the system takes place in rounds where a controllable event 
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is followed by an uncontrollable one. To ensure that  the resulting au tomaton  will 
not block and that  the priority of d over u is preserved we add two new states, qa 
and as ,  and a new event, c, and (re)define X = Q u {an, as}, QB = QB U {qB}, 
I = I U {qa}, U = ~c U {~}, D = Z~ U {~} and Y = Q. We then form a complete 
transition relation by defining: 

E - -  {(ql, (d, u), q2) E X • (D 

I q2 = 5(qi, d) 
q2 = qG 

q2 = 5(ql, U) 
qi E Q ~ q2 = qB 

q2 ---- qG 

q2 = qB 

q2 = q l  

ql = qB ~ q2 "= qB 
qi = qG ~ q2 = qG } 

• • 
if d # c,u = ~,5(qi,d)! 
if d # ~, u = c, 5(qi, d) 
if d = e, u r e, 5(qi, u)! 
if d = e, u ~s c, 5(qi, u) y 
if d ~ e,u ~s e, 5(ql,d) V 
i f d  r e,u ~ e, 5(qi,d)! 
i f d = e , u = c  

Here 5(q,e)i is used to denote that  the map 5 is defined for the pair (q,e) E 
Q • (~c u Zu) and 5(q, e) Vthat it is not. 

To cast the problem in the setting of Section 3 consider a discrete metric, 
m, on Q, defined by m(qi,q2) = 0 if qi = q2 and m(ql,q2) = 1 if qi r q2. 
I t  is easy to check that  m satisfies the axioms of a metric. The metric can be 
extended to subsets of Q in the usual way (i.e. m(Qi, Q2) = 1 if Qi MQ2 # ~ and 
m(Qi, Q2) = 0 otherwise). Let d = {di, d2, . . .}  6 D* denote a sequence in D and 
u = { u i , u 2 , . . . }  E U* denote a sequence in U and define their interleaving as 
(d,u) --- {(di ,Ul),  (d2,u2), . . .}  E (D • U)*. As G is assumed to be deterministic, 
the transition structure defines a unique state t ra jectory x = {qo,qi , . . .}  E 
X* for every qo E I and every (d,u) E (D • U)*. The defining relation is 
(qi, (di+i, ui+i) ,  qi+i) E E.  The metric can be used to assign a cost to this run 
by: 

J(qo, (d, u)) = - min m(q, QB) 
qEx 

The teachability problem can now be thought of as a game between u and d over 
the cost function J .  Consider "feedback" m a p s / )  : X ~ 2 D and b" : X ~ 2 v. 
The following algorithm produces the least restrictive class of safe controls: 
S t e p  0: Set i = 1. Define Q~ = QB,/)(q) = {~}, U(q) = U for all q E Q~. 
S t e p  i: Define NeWQB = {q 6 Q \ Q~] 3di E D, q' e Q'B 9 (q, (d~, e), q') e E}. 

If NeWQB # O increment i and define for all q E NewQ B /)(q) = {di E D] 
3q' E Q'B 9 (q,(di,c),q') E E} and U(q) = U. Redefine Q~ = Q~ UNewQ B and 

return to step i. If  NewQ B = O, then for all q E X \ Q~ def ine / ) (q)  = D and 

(f(q) = {ui E U] (q,(c, ui),q') E E ~ q' ~ Q'B}. 

L e m m a  1 The algorithm terminates in at most IXI steps. The system is safe 
if and only if I C V1 = Q \ Q'B. 



116 

C o r o l l a r y  1 U defines the least restrictive class of controls that can guarantee 
that the system stays safe whenever it starts safe. 

Clearly, the least restrictive class of safe controls is already in feedback form. 
The above construction can also be used for reachability verification in finite 
automata, by letting Zu -- ~, ~c = 0. D provides an error trace starting at any 
state q0 E I N V1. In this special case the ~ construction is not necessary. 

5 T h e  S t e a m  B o i l e r  

Our analysis of the steam boiler problem is based on the description of [2], which 
is simpler than the original specification of [11] in that the effect of faults on 
the system is not considered. The steam boiler consists of a tank containing 
water and a heating element that causes the water to boil and escape as steam. 
The water is replenished by two pumps which at time t pump water into the 
boiler at rates i5~(t) and i52(t) respectively. At every time pump i can either be 
on (p~(t) = Pi) or off (Pi(t) = 0). There is a delay Tp~ between the time pump 
i is ordered to switch on and the time p~ becomes Pi. There is no delay when 
the pumps are switched off. The requirement is that  the water level remains 
between two values M1 and M2. We will use three hybrid automata  to describe 
the system, one for the boiler and one for each of the pumps. The specification of 
[2] also includes a valve that,  together with the pumps, can be used to bring the 
water level to a desirable initial condition before the heating element is turned 
on and the boiling starts. As the valve is only used to set the initial condition, 
its operation will be ignored in our safety calculations. 

5.1 S y s t e m  M o d e l  

The boiler is modeled by a hybrid automaton, l ib --- {Xp, UB, YB, IB, fB, 
EB, hB}, with a single discrete state and two continuous states, the water level, 
w, and the rate at which steam escapes, r. We assume that both states are 
available for measurement. The system evolution is influenced by two discrete 
inputs, ~bl and P2, and one continuous input, the derivative of the steam rate, 
d. The physical properties of the boiler impose the bounds r(t) E [0, W] and 
d(t) e I-U2, U1] for all t. Following [2] the dynamics are given by: 

fB(XB'UB)= [ ~l+~92-r]d EB= U (xB, B,xB); 
xB E XB 
uB E UB 

hB(XB,UB) = XB 

Note that the set E does not allow any discrete jumps of the state. It is assumed 

that W, UI, U2, PI and/)2 are positive constants. 
Each pump can also be modeled by a hybrid automaton, Hp~ = {Xp~, Ups, 

Yp~, Ip~, fp~, Ep~, hp~ }, with two discrete states qi = 0 and qi = Pi that reflect 
if the pump is on or off and one continuous state, Ti, that reflects the time that 
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has elapsed since the pump was ordered to switch on. The evolution of the state 
is affected by a discrete input that takes the value 0 if the pump is ordered to 
switch off and 1 if the pump is ordered to switch on. The dynamics are given by 
fpl (Xpl, ui) = ui, hp, (Xpl , Ups) = xpl and 

EP~ = ( <UTp ((0 'Ti) '0 '  (0' 0 ) ) )  U Ti i 

((O, Tp~), l , (P~,Tp,))  U 

U 

The combined system automaton can be obtained as the interconnection 
S(i)i) = qi for i = 1, 2 of HB,  Hpl and Hp2. The resulting automaton will have 
four discrete and four continuous states. If the outputs ql and q2 of the pumps 
are suppressed, the definition of the interconnection automaton gives: 

X =  ((ql,q2),[W r T1 T2] T) E X =  {0, P1} x {0,/~ x ] ~ •  [0, W] x]~_ 

u = ((ul ,  u2), d) e U = {0, 1} 2 x [-U2, Vl] 

y e Y = I~ x [O, W] x R~+ 

x ~ � 9  xlp2 

with dynamics: 

f ( x , u )  = d " E = EB X E m x Ep2 ; h ( x , u )  = (w,r ,  T1,T2) 

U2 

By a slight abuse of notation the value of the discrete states and inputs is used 
in the vector field definition. Without loss of generality assume that all runs 
of the automaton begin at t = 0. Our goal is to design a feedback controller 
for Ul and u2 that keeps the water level in the interval w(t)  �9 [M1,M2] for all 
t > 0. This requirement can be encoded by two cost functions -/1 (x ~ ul,  u2, d) = 
- inft>_0 w(t)  and J~(x ~  u2, d) = supt>0 w(t) .  For a given run (x ~ u) the 
requirements are satisfied if and only if J1 (-x ~ u) <__ - M 1  and J~ (x ~ u) _< M2. 

5.2 S a d d l e  S o l u t i o n s ,  Safe  S t a t e s  and  Safe  C o n t r o l s  

For any initial condition x ~ = ((q0, qO), [w 0 r 0 T ~ TO]T), consider the following 
candidate saddle solutions: 

u~ (t) = 1 for all t; d,(t) {al ift < 
if t > vl 

{ -[72 if t_< ~ (5) 
u~* (t) = O for all t; d '* ( t )=  0 if t >  N 

(4) 
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T1 0 0 

Fig. 1. Lower limit on w to avoid draining 

L e m m a  2 (u~,u~,d*) and (u'l*,u'2*,d'*) are saddle solutions for the game be- 
tween (ul, u2) and d over cost functions J1 and J~. 

It should be noted that the saddle solution is not unique in the case of J~, as far 
as the ui are concerned. In particular, any ui such that ,b(t) <_ 0 for all t will 
produce the same maximum water level (equal to the initial water level). 

The saddle solution calculation for J1 allows us to determine the water levels, 
w ~ that  are safe with respect to M1 as a function of r ~ T ~ and T ~ In particular, 
the boundary between safe and unsafe states can be thought of as a function 
tb : [0, W] x I~_ -+ I~, which maps (r ~ T ~  ~ to the minimum water level 
required for safety. The level sets of ,3 for T ~ = 0 (pump 2 is initially off and 
for T ~ >_ Tp2 (pump 2 is initially fully on) are shown in Figure 1. The safety 
boundary for any other value of T2 will be a similar surface lying between the 
two surfaces of the figure. Safety (w(t) >_ M1) can be maintained as long as the 
current value of the water level is on or above the corresponding surface. As 
expected the higher the value of T2 the more states are safe (the surface moves 
down). The parameters used in the figure were M1 = 0, U, = 0.5, W = 4, 
P1 = P2 = 2.5 and Tvl = Tp2 = 5. 

The states that  are safe with respect to/!t/2 can be similarly determined. On 
the boundary between safe and unsafe states, w ~ = M2 (the only situation where 
J '  becomes safety critical) and: 

0 if T ~  m and T ~  

r o = ?(T o, T o) = P1 if T ~ >_ Tpl and T ~ < Tv= 
P= if T ~ < T . ,  and T ~ > T;= 

P~ + P2 if T~ >_ Tm and T~ >_ Tp~ 
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The interpretation is that  any initial condition such that  either w ~ < M2 or 
w ~ = M2 and r ~ _ §176 ~ is safe with respect to J ' .  

The calculation of the safe set also allows us to classify the controls that  can 
keep the system safe provided it starts safe (w ~ and r ~ in the ranges discussed 
above). The class of safe controls is given in a state feedback form. 

L e m m a  3 A control law for (ul,u2) is safe with respect to M1 if and only if: 

~1 e {0, 1} U 2 e {0, 1) if w > Cv(r, O, O) 

Ul = 1 u2 e {0,1} i ]~ ( r ,  0,0) _> w > ~(r ,  T1,0) 

~1 �9 {0,1} u2 = 1 if ~(r, 0, 0) > w > ~(r, 0, T2) 
Ul = 1 u2 = 1 if w < ~(r, T1,T2) 

Note that,  as v~ is monotone in/"1 and T2, the last condition is satisfied if and 
only if all other conditions fail. The two middle conditions may in fact overlap, 
therefore there is some nondeterminism in the choice of safe controls: some states 
may be safe with either one or the other pump on, but not neither. Similarly: 

L e m m a  4 A control law for (ul,u2) is safe with respect to M2 if and only if: 

ul �9 {0,1} u2 �9 {0,1} i fw  < M2 or r > ~(T1,T2) 

Ul = 0 u2 �9 {0, 1} if w >_ M2 and ~(T~, T2) _> r > ~(0, T2) 

ul �9 {0,1} u2 = 0 i f w  > M2 and ~(T1,T2) _> r > § 

ul = 0 u2 = 0 if w >_ M2 and r <_ min{~(T1,0), ~(0, T2)} 

6 F l i g h t  V e h i c l e  M a n a g e m e n t  S y s t e m  

The flight vehicle management system (FVMS) example is based on the dynamic 
aircraft equations and the design specification of [12]. The equations model the 
speed and the flight path angle dynamics of a commercial aircraft in still air. The 
inputs to the equations are the thrust T, accessed through the engine throttle, 
and the pitch angle 8, accessed through the elevators, and the outputs are the 
speed V and the flight path angle V. There are three primary modes of operation. 
In M o d e  1, T is between its specified operating limits (Train < T < Tmax), both 
T and 8 can be used as inputs and both V and ? can be controlled as outputs. In 
M o d e  2, T saturates (T = Train Y Tma=) and is no longer available as an input. 
The only input is 8, and the only controlled output is V. Finally, in M o d e  3, T 
also saturates, the input is again 8 but the controlled output is 7. Within Modes 
2 and 3 there are two submodes depending on whether T = Tmin (idle thrust) 
or T = Tmax (maximum thrust). 

Safety dictates that V and 7 must remain within specified limits. For ease of 
presentation we simplify this safety envelope, S, of [12] to S = {(V, "y)l(Vm~,~ < 
V ~_ Vmax) A (~/rnin ~_ ~f ~_ ~rnax)}, where Vmin, Vmax, "/rain, "~max are constants. 
We would like to design a control scheme which will cause the aircraft to reach 
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a target operating point (V,')')target in S from any initial operating point in S. 
The resulting trajectory (V(t), ~/(t)) must not exit the envelope at any time and 
must satisfy acceleration constraints imposed for passenger comfort. 

6.1 S y s t e m  M o d e l  

The flight path angle dynamics of the aircraft can be summarized using two 
state variables, x = [V 7] T E N x S 1 , where V (m/s) is the airspeed and 3' (tad) 
is the flight path angle. The dynamics of the system are given by: 

~7 a D V2 1 
- 9 sin ? + (6) m (m)T 
_ aLV(1- -cv)  gcos 7 

rn ~ + ( )0 (7) 

where T (N) is the thrust, m (kg) is the mass of the aircraft, g (m/s 2) is grav- 
itational acceleration, aL and aD are the lift and drag coefficients, e is a small 
positive constant and 0 is the aircraft pitch angle. For these equations to be 
meaningful we need to assume that X C (0, co) x [-~r/2, 7r/2]. Clearly this will 
be the case for realistic aircraft. Physical considerations also impose constraints 
on the inputs: U = [Train, T,~ax] x [Omin, Om~x]. 

TO guarantee safety we need to ensure that x(t) E S for all t. Let OS denote 
the boundary of S. The requirement that the state stays within S can be encoded 
by a cost function: 

(x  ~ u )  = - - a s )  (s) 

by defining: 

OS = [ miny~os [Ix(t) - yl]yll if x C S x( t )  I 

~, - minyco2 I]x(t) - if x r S 

Here I]" I] denotes the Euclidean metric on ]~2. To ensure that the state stays 
within S we impose the threshold Jl(x~ <_ O. 

Cost functions involving the linear and angular accelerations can be used to 
encode the requirement for passenger comfort: 

J2(x~ u) = m_>ax(l)(t)) and J~(x~ u) = m>ax(V(t);/(t) ) (9) 

The requirement that the linear and angular acceleration remain within the 
limits determined for comfortable travel are encoded by thresholds J2(x~ < 
0.1g and J~(x ~ u) < 0.1g. 

6 . 2  S a f e  S t a t e s  a n d  L e a s t  R e s t r i c t i v e  S a f e  C o n t r o l s  

To find the controls that keep the state within the safety envelope we solve the op- 
timal control problem J~ (x ~ = minucu 51 (x 0 , u), u* (x 0) = arg minu~u J] (x ~ u). 
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P r o p o s i t i o n  1 ( O p t i m a l l y  Safe Cont ro l s )  The optimally safe input is: 

{(T,~,~,,e,~,~) Vz ~ = (v,7) e sn{ (v ,7 ) :  ~'-'~'' 
u*(x~ = (Tmi~ ,Om~, lVxO=(v ,7 )  e S n { ( V , T )  ~ -~ . , .  

~[ma~ --"~min 

V - V m i n  
> V.~a~-V~ } 

V--Vm~n < 
vma~ - v~i~ J 

The optimal control calculation allows us to determine the set of safe states and 
the class of controls that renders this set safe. If J~(x ~ > 0 there is no control 
that will keep the trajectory starting at x ~ E S within S. If, however, J~(x ~ <_ 0 
there exists at least one (and maybe multiple) such safe controls. Our goal is to 
determine V1 -- {x ~ E SIJ~(x ~ < 0} and Ul(x ~ = {u E UIJ l (x~  <_ 0}. 

We start by analyzing the system equations (6, 7) along OS. Consider an ar- 
bitrary point x ~ E OS. We can distinguish three cases. If f (x  ~ u) points "inside" 
S for all u E U then all controls are safe for the given point x ~ i.e. Ltl(x ~ = U. 
If f ( x  ~ u) points "outside" S for some u, let ~r C U be the controls for which 
this happens. These inputs are unsafe for the point x ~ i.e. /41(x ~ = U \ ~r. 
Finally, if f (x  ~ u) points outside S for all u E U then all controls are unsafe for 
the given point x ~ i.e. Ltl(x ~ = ~. A special case of the second situation is one 
where f ( x ~  is tangent to 0S  for some u and points outside for all others. In 
this case, the set of controls that make f (x  ~ u) tangent to OS will be exactly u*. 
This allows us to extend the safe set construction to the interior of S. The system 
equations are integrated backwards using u* from that point to determine the 
boundary of the safe set in the interior of the envelope. 

Consider, for example, the left hand edge of OS (Figure 2). The complete set 
of controls moves from being safe to unsafe as 7 varies from 7min to 7max. We can 
determine which values of (T, 0) in U are unsafe along OS by determining where 
along this boundary the vector field is tangent to OS. We calculate this by setting 
V = 0, T = 7 ~ in equation (6). Solving for T leads to 2P(7 ) = aDV2min + mgsin7 .  
5P(7 ) does not depend on 0, so the safe set of inputs are all (T, tg) for which 
T(?) _> 7~(7). When ? is such that T(7)  = Tmin, the cone of vector fields points 
completely "inside" S; when "7 is such that  T(7)  = Tmax, the cone of vector fields 
points completely "outside" S, and Tmax is the unique thrust input which keeps 
the system trajectory inside S. We define 71 and ?2 to be such that  T(?I)  = Tmax 
and 7~(72) = Tmi~ and calculate the boundary of the safe set of states on the 
interior of the envelope by integrating the system equations backward in time 
from (Vmi~, 71) using the constant control (Tm~x,Omi~). We denote this part of 
the safe set boundary in the interior of S as OVt t, and the point of intersection 
of OV~ with the upper edge of OS as (V1,Tmaz). 

A similar calculation along the upper edge of OS using equation (7) yields 
the values of 0 for which the vector field becomes tangent to OS: O(V) = 

r, (~OS~mo. ~Lv(i ~o~) )  ~L Vc v - m e . The set of safe inputs in this case is all (T,/9) 

for which 0(V) < 0(Y). When Y is such that  tg(Y) = 0rain, Om/~ is the unique 
pitch angle input which keeps the system trajectory inside S. The calculations 
may be repeated for the right hand side and lower boundaries of S. 
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We are now in a position to describe explicitly the safe set of states 171 and 
the safe controls bll(x~ Define the boundary of V1 as 

or1 = {(<'7)1 (v  = v. { ,O ^ ('7,~{n < '7 < "r~) v (E '7)  ~ o v J v  
('7 = '7,,,o~) ^ (v~ < v < v,~,~.) v ( v  = v . , ~ . )  ^ (0'4 < "7 < '7,~,~.)v 
(v, 0,) c o v ]  v ('7 = .~,~,,) ^ (v,~,, <_ v < v~)} 

V1 is defined as the set enclosed by 0171. This is depicted in Figure 2. Ltl(x ~ is 

~v1 
0.4 rad :. ............. ~ .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ (VI, ]'max) 

(Vmin, 72 ) 
V1 

-0.4 rad 

180 ngs 

( Vmax, Y3 ) 
i 

( Vmax, Y4)] 

- -  . .  V 

Fig. 2. The safe set of states, 171, and its boundary 0171 

defined by the feedback map G : S ~ 2u: 

r ~) = { O, (v, ~) ~ SkV~ 
< O(V) A Tm{n < T _< Tm~, (V,?) e (7 = V~ax) A (I/'i < V < V~) 

0ram _< 8 _ tgmax A T  >/~(7), (V, V) E (V : Vmin) A (0'2 --< 7 -< '71) 
em{~ < e < e . ~  A T  _< ~'('7), (Y,~) e (V = Vmo.) ^ ('74 _< '7 < '73) 
e = e.~{n ^ T = T . ~ ,  (Y,'7) ~ OY) 

: em~. ^ T = T~{~, (Y,'7) e OY~ 2 
Ornin ~ 0 ~ Omax h Tm~n <_ T < Tmax, else} 

This map defines the least restrictive control scheme which satisfies the safety 
requirement and it determines the mode switching logic. On OV~ and OV 2, the 
system must be in M o d e  2 or M o d e  3. Anywhere else in V1, any of the three 
modes is valid as long as the input constraints of G are satisfied. In the region 
S\V1 no control inputs are safe. 
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6.3 Ad d i t i on a l  Constra ints  for Passenger  Comfort  

Within the class of safe controls, a control scheme which addresses the passenger 
comfort (efficiency) requirement can be constructed. To do this, we solve the 
optimal control problem for J2 and J~, for x ~ E V1. From this calculation, we 
determine the set of "comfortable" states and controls: 

V2 = {x ~ e Yl : J~(x ~ <_ 0.1g A J'2*(x ~ <_ 0.1g} (10) 

U 2 ( x ~  : J2 (x~176  (11) 

These sets may be easily calculated by substituting the bounds on the accelera- 
tions into equations (6, 7): 

- mg cos 3' T < 0.ling + aDV 2 q- mg sin 3' and 9 < O.lmg 1 c________7 + _ _  (12) 
-- -- aLV2c c aLV2c 

These constraints provide upper bounds on the thrust  and the pitch angle which 
may be applied at any point (V, 3') in V2. 
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