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CONTROL SYNTHESIS FOR A CLASS OF HYBRID SYSTEMS SUBJECT

TO CONFIGURATION-BASED SAFETY CONSTRAINTS*

Michael Heymann,t Feng Lin, _t and George Meyer

Ames Research Center

SUMMARY

We examine a class of hybrid systems which we call Composite Hybrid Machines (CHMs) that con-

sists of the concurrent (and partially synchronized) operation of Elementary Hybrid Machines (EHMs).

Legal behavior, specified by a set of illegal configurations that the CHM may not enter, is to be

achieved by the concurrent operation of the CHM with a suitably designed legal controller. In the present

paper we focus on the problem of synthesizing a legal controller, whenever such a controller exists.

More specifically, we address the problem of synthesizing the minimally restrictive legal controller.

A controller is minimally restrictive if, when composed to operate concurrently with another

legal controller, it will never interfere with the operation of the other controller and, therefore, can

be composed to operate concurrently with any other controller that may be designed to achieve liveness

specifications or optimality requirements without the need to reinvestigate or reverify legality of the

composite controller.

We confine our attention to a special class of CHMs where system dynamics is rate-limited and

legal guards are conjunctions or disjunctions of atomic formulas in the dynamic variables (of the type

x < x0 or x > x0). We present an algorithm for synthesis of the minimally restrictive legal controller.

We demonstrate our approach by synthesizing a minimally restrictive controller for a steam boiler

(the verification of which recently received a great deal of attention).

1 INTRODUCTION

Various definitions have been proposed in the literature to capture the intuitive idea that

hybrid systems are dynamic systems in which discrete and continuous behaviors coexist and interact

(refs. 1-6). Broadly speaking, they are systems in which change occurs in response to events that take

place discretely, asynchronously, and sometimes nondeterministically and also in response to dynamics

that represents (causal) evolution as described by differential or difference equations of time. Thus,

most physical systems that can be represented by formal behavior models are hybrid in nature.
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NAG2-1043 and in part by the Technion Fund for Promotion of Research.

The work by the first author was completed while he was a Senior NRC Research Associate at NASA Ames Research
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In recent years there has been a rapidly growing interest in the computer-science community in

modeling, analysis, formal specification, and verification of hybrid systems (see, e.g., references 2 and 7).

This interest evolved progressively from logical systems, through "logically timed" temporal systems

(refs. 8 and 9) to real-time systems modeled as timed-automata and, most recently, to a restricted class

of hybrid systems called hybrid automata (ref. 1). Thus, the computer-science viewpoint of hybrid

systems can be characterized as one of discrete programs embedded in an "analog" environment.

In parallel, there has been growing interest in hybrid systems in the control-theory community,

where traditionally systems have been viewed as "purely" dynamic systems that are modeled by dif-

ferential or difference equations (refs. 3, 4, and 10). More recently, control of purely discrete systems,

modeled as discrete-event systems, also received attention in the literature (refs. 11 and 12). The grow-

ing realization that neither the purely discrete nor the purely continuous frameworks are adequate for

describing many physical systems has been an increasing driving force to focus attention on hybrid

systems. Contrary to the computer-science viewpoint that focuses interest in hybrid systems on issues

of analysis and verification (refs. 13-15), the control-theory viewpoint is to focus its interest on issues

of design. Typical hybrid systems interact with the environment both by sharing signals (i.e., by trans-

mission of input/output data) and by event synchronization (through which the system is reconfigured

and its structure modified). Control of hybrid systems can therefore be achieved by employing both

interaction mechanisms simultaneously. Yet, while this flexibility adds significantly to the potential

control capabilities, it clearly makes the problem of design much more difficult. Indeed, in view of the

obvious complexity of hybrid control, even the question of what are tractable and achievable design

objectives is far from easy to resolve.

In the present paper we examine the control problem for a restricted class of hybrid systems that

we call composite hybrid machines (CHMs). We confine our attention to bounded rate CHMs, in which

the dynamic rates are bounded by lower and upper constant bounds. Control is confined to event

synchronization; that is, the controller can affect the system's behavior only by discrete commands.

These hybrid systems are a generalization of timed automata, which in turn generalize discrete event

systems by introducing real-time constraints. For such systems it is natural to specify the control

objective in terms of safety constraints and liveness constraints, much in the spirit of the control of

discrete-event systems. Indeed, this generalization is on one hand simple enough to be computationally

tractable, and on the other hand complex enough to provide some substantial new insight and a sense

of new research direction.

2 DESIGN PHILOSOPHY

Intuitively, a controller for legal behavior of a hybrid system is minimally restrictive if it never takes

action unless constraint violation becomes imminent. When this happens, the controller is expected to

do no more than prevent the system from becoming "illegal." This is a familiar setting in the discrete-

event control literature, where the role of the controller has traditionally been viewed as that of a

supervisor that can only intervene in the system's activity by event disablement (refs. ! 1 and 12). Thus,

a minimally restrictive supervisor of a discrete-event system is one that disables events only whenever

their enablement would permit the system to violate the specification.
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It is notdifficult to seethata naturalcandidatefor a "template"of aminimally restrictivesupervisor
is a systemwhoserangeof possiblebehaviorscoincideswith the set of behaviorspermittedby the
specification.The concurrentexecutionof the controlledsystemand sucha supervisor,in the sense
thateventsarepermittedto occur in thecontrolledsystemwhenevertheyarepossiblein the controller
template,would thenconstrainthe systemto satisfythe specificationexactly. We shall thensay that
we haveemployedthe specificationasa candidateimplementation.If all theeventsthat arepossible
in the systembut not permitted by the candidatesupervisorcan actually be disabled, we say that
the specificationis implementable or (when the specification is given as a legal language) controllable

(ref. 11). Generally, a specification may not be implementable because not all the events can be disabled.

The standard approach to supervisory controller synthesis can then be interpreted as an iterative

procedure where, starting with the specification as a candidate implementation, at each stage of the

iteration the specification is tightened so as to exclude behaviors that cannot be prevented from becoming

illegal by instantaneous disablement of events (refs. 16 and 17). The subspecification thus obtained is

then used as a new candidate implementation. When the procedure converges in a finite number of steps

(a fact guaranteed in case the system is a finite automaton and the specification a regular language), the

result is either an empty specification (meaning that a legal supervisor does not exist) or a minimally

restrictive implementable subspecification.

In the present paper we shall employ the same design philosophy for the synthesis of minimally

restrictive controllers of hybrid systems. While the approach is, in principle, very general and can be

employed for a wide range of specifications, we confine our attention in the present paper to a restricted

class of safety specifications. In particular, we shall consider only the problem where the controller is

required to prevent the system from entering a specified set of illegal configurations. Although we shall

not show this explicitly in this paper, a wide class of specifications can be transformed into the setting

considered here.

We shall restrict our attention further to bounded-rate hybrid systems. That is, we consider systems

in which the rates of the dynamic variables are bounded by finite constants. It is not difficult to show

that, even in this simple case, the question of existence of a controller may be computationally rather

tricky.

3 HYBRID MACHINES

We first introduce a modeling formalism for a class of hybrid systems which we call hybrid machines

and which are a special case of hierarchical hybrid machines to be discussed elsewhere (Heymann and

Lin, Hierarchical Hybrid Machines, in preparation). Hybrid machines are similar in spirit to hybrid

automata as introduced in reference 1. We begin by an informal example.

3.1 Illustrative Example

Figure 1 describes schematically a hybrid system that consists of a water tank with water supplied

by a pump and with outflow controlled by a two-position valve.
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Figure 1. Water tank system.

The system is described graphically in figure 2 as a CHM that consists of three elementary hybrid

machines (EHMs) running in parallel:
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The EHM Tank has three vertices: <high>, <normal>, and <low>, representing the tank's high,

normal, and low levels, respectively. The dynamic behavior of the tank's water level L is described

by the equations :_ = V - F, L = x, where x is the (internal) state of the vertex, and V and F are

the rates of water inflow and outflow, respectively. The quantities V and F constitute input signals to

the EHM Tank and output signals of the EHMs Pump and Valve, respectively. Tank may reside at

a given vertex provided the vertex invariant [.] is true. Thus, it may reside at the vertex <normal>

so long as the invariant [LI<LAL<L2] is satisfied, and similarly for the other vertex invariants. The
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Figure 2. Water tank system CHM.
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transitionsbetweenthe threeverticesaredynamic in the sense that they are triggered, respectively, by

the guards [L > L2], [L<L2], [L>L1] and [L < L1] becoming true. The self-loop dynamic transition

of the vertex <normal> labeled by [L<L1 +A]--,pump - on is guarded by the predicate [L<L1 + A]

and upon occurrence triggers the output event pump - on. (Throughout, underlined event labels denote

input events and overlined event labels denote output events.) Similarly, the other self-loop transition

of the vertex <normal> is guarded by [L>_L2 - A] and triggers the output event pump- off. The

EHM Tank is initialized at the vertex <normal> with initial water level Lo (that lies between the lower

bound L1 and the upper bound L2).

The EHM Pump has two vertices: < offp > and < onp >. At the vertex < offp >, the pump

is off, reflected by the vertex output V = 0. Similarly, at the vertex < onp >, the pump is running

and the vertex output V is the pump's (constant) flow rate P. The transitions between the two vertices

are labeled by the input event labels pump - on and pump - off. These transitions are triggered by

and take place concurrently and synchronously with the output events pump- on and pump- off,

respectively.

Finally, the EHM Valve can be at either of the vertices < openv > or < closedv >. Transitions

between the two vertices are labeled by input events valve- open and valve- closed, respectively.

These transition labels do not appear as output events in any of the other parallel EHMs but can be

received from the (unmodeled) environment. When Valve is closed the rate of outflow is F = 0, and

when it is open the rate is proportional to the water level in the tank F = KL.

Notice that there are two mechanisms for communication between parallel EHMs: (1) Input/output-

event synchronization, by which transitions are synchronized. Transitions labeled by input events can

take place only in synchrony with a corresponding output event that is being transmitted either by a

parallel EHM or by the environment. (2) Signal sharing, by which outputs (output signals) of a vertex

are available as vertex inputs to any other parallel EHM.

3.2 Elementary Hybrid Machines

With the above illustrative example in mind, we can now formally define hybrid machines as

follows. An elementary hybrid machine is denoted by

EHM = (Q,E,D,I,E,(qo, xo))

The elements of EHM are as follows.

• Q is a finite set of vertices.

• E is a finite set of event labels. An event is an input event, denoted by o (underline), if it

is received by the EHM from its environment; and an output event, denoted by _ (overline), if it is

generated by the EHM and transmitted to the environment.

• D = {dq = (Xq, yq, Uq, fq, hq) : q E Q} is the dynamics of the EHM, where dq, the dynamics

at the vertex q, is given by

JCq = fq(Xq, Uq)

yq = hq(xq, Uq)



with Xq, Uq, and yq, respectively, the state, input, and output variables of appropriate dimensions, fq

is a Lipschitz continuous function and hq a continuous function. (A vertex need not have dynamics

associated with it--that is, dq = 0, in which case we say that the vertex is static.)

• 1 = {Iq : q E Q} is a set of invariants, lq represents conditions under which the EHM is

permitted to reside at q. A formal definition of Iq will be given in the next subsection.

• E = {(q, G A a ---, a---/, qt, x ° ) : q, q/ E Q} is a set of edges (transition paths), where q is the
_ qt

exiting vertex, qt the entering vertex, 0. the input event, _-/the output event, G the guard to be formally

defined in the next subsection, and x_, the initialization value for Xq, upon entry to qt.

(q, G A 0. ---, 0"--7,qt, x_,) is interpreted as follows. If G is true and the event o- is received as an input,

then the transition to q_ takes place with the assignment of the initial condition Xq,(to) = x O, (here to

denotes the time at which the vertex qt is entered). The output event a t is transmitted at the same time.

If 0. is absent, then the transition takes place immediately upon G becoming true; if 0.t is absent, then no

output event is transmitted; if G is absent, the guard is always true and the transition will be triggered

by the input event a; and if x ° is absent, then the initial condition is inherited from Xq (assuming Xq
__ ql

and Xq, represent the same physical object and hence are of the same dimension).

• (qo,xo) denote the initialization condition: q0 is the initial vertex and Xqo(to) = xo.

For the EHM to be well defined, we require that the vertices be completely guarded with each possible

invariant violation. That is, every invariant violation implies that some guard becomes true and the

associated transition is input event-free in the sense that it has the form (q, G ---, 0.--/,qt, x°,). (It is, in

principle, permitted that more than one guard become true at the same instant. In this case the transition

that will actually take place is resolved nondeterministically.) Note that we do not require the converse

to be true. That is, a transition can be triggered even if the invariant is not violated. We do require

that, upon entry to q_, the invariant lq, not be violated. It is, however, possible that upon entry to qt

one of the guards at ql is already true. In this case, the EHM will immediately exit q_ and go to the

vertex specified by the guards. Such a transition is considered instantaneous. Naturally, we only allow

finite chains of such instantaneous transitions. That is, the guards must be such that no sequence of

instantaneous transitions will form a loop.

In this paper we shall study a restrictive class of hybrid machines by making the following

assumption.

Assumption 1 The dynamics described by fq and hq has the following properties: (1) hq(xq,Uq) is

a linear function; and (2) fq(Xq, Uq) is bounded by a lower limit kqL and an upper limit k U, that is,

[kqL,k l.

An execution of the EHM is a sequence

el ,tl e2,t2 e3,t3
q0 -"--* ql _ q2 -'-'-* "'"

where ei is the ith transition and ti is the time when the ith transition takes place. For each execution,

we define its trajectory, path, and trace as follows.



• Thetrajectoryof theexecutionis thesequenceof thevectortimefunctionsof thestatevariables:

Xqo _ Xql _ Xq2 _ ...

where Xqi = {Xqi(t) : t E [ti,ti+l)}.

• The path of the execution is the sequence of the vertices.

• The input trace of the execution is the sequence of the input events.

• The output trace of the execution is the sequence of the output events.

Remark 1 It is easily seen that discrete-event systems and continuous-variable systems are special cases

of the hybrid systems as described above. Indeed, we note that if there is no dynamics in an EHM (and

hence no D and I), then

EHM = (Q,Z,E, qo)

where edges E' are labeled only by events: a typical discrete-event system. Similarly, if there is no

event and only one vertex in an EHM (and hence no need to introduce Q, Z, I, and E), then

EHM= (D, xo) = (x,y,u,f,h, xo)

which is a typical continuous-variable system.

3.3 Composite Hybrid Machine

A composite hybrid machine consists of several elementary hybrid machines running in parallel:

CHM = EHM'LIEHM211...IIEHM n

Interaction between EHMs is achieved by means of signal transmission (shared variables) and input/output-

event synchronization (message passing) as described below.

Shared variables consist of output signals from all EHMs as well as signals received from the

environment. They are shared by all EHMs in the sense that they are accessible to all EHMs. A

shared variable can be the output of, at most, one EHM. If the EHM of the output variable does not

update the variable, its value will remain unchanged. The set of shared variables defines a signal space

S = [S1,5'2, ..., Sm].

Transitions are synchronized by an input/output synchronization formalism. That is, if an output

event _ is either generated by one of the EHMs or received from the environment, then all EHMs for

which cr is an active transition label (i.e., cr is defined at the current vertex with a true guard) will

execute cr (and its associated transition) concurrently with the occurrence of _. An output event can

be generated by, at most, one EHM. Notice that input events do not synchronize among themselves.



Noticefurther thatthis formalismis a specialcaseof theprioritizedsynchronouscompositionformalism
(ref. 18),whereeachevent is in the priority setof, at most,oneparallelcomponent.

By introducingthesharedvariablesS, we can now define invariants and guards formally as boolean

combinations of inequalities of the form (called atomic formulas)

Si > Ci or Si < Ci

where Si is a shared variable and Ci is a real constant.

To describe the behavior of

CHM = EHMt[IEHM21I...IIEHM'_

we define a configuration of the CHM to be

q=<qll q?2 qn >EQ1 × Q2 × xQn
_ ""_ _rt "'"

where QJ is the set of vertices of EHMJ (components of the EHMs are superscripted).

When all the elements of q are specified, we call q a full configuration. When only some of the

elements of q are specified, we call q a partial configuration and we mean that an unspecified element

can be any possible vertex of the respective EHM. For example, < q/22, ..., q[*n > is interpreted as the
set

< q/22, --., qT.,,_>= { < q_,' q/22' "'" q:_n >: ql E Q1}

Thus, a partial configuration is a compact description of a set of (full)of full configurations.

configurations.

A transition

< qll,q?_,...,q_ n >/-_<@l,@2,...,qi, n >

of a CHM is a triple where < q/l, q/22' -.., q.n_n> is the source configuration, < @,, @2' "'" @n > the

target configuration, and l the label that triggers the transition. I can be either an event or a guard

•(becoming true). Thus, if 1 = a is an event (generated by the environment), then either @7 = if cr

-is such that( ,a_cr p,@7,x 0.
is not active at , or @j _ _,7 ) is a transition in EJ. On the other hand,

, _'trn X m ) in some EHM m andif l = G is a guard, then there must exist a transition (qimm G _ cr t, q , Oi_

for j ¢ m, either qi'jj = _j if _a_ is not defined at , or is such that ( ,_a_ --, _fi, , x °.q_,) is a
3

transition in EJ.
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Recall that our modelalso allowsguardedevent transitionsof the form

However,since for the transitionto takeplacethe guardmust be true whenthe event is triggered,a
guardedevent transitioncanbedecomposedinto

G

----' q2 __ qtql _G

where q has been partitioned into ql and q2, with Iql = Iq A --,G and Iq2 = Iq A G. It follows that a

guarded event transition can be treated as a combination of a dynamic and an event transition.

Thus, transitions in CHMs can be classified into two types: (t) dynamic transitions, which are

labeled by guards only, and (2) event transitions, which are labeled by events.

The transitions are considered to occur instantaneously, and concurrent vertex changes in parallel

components occur at exactly the same instant (even when constituting a logically triggered finite chain

of transitions).

Remark 2 Based on the above definition, a CHM can be viewed as the same object as an EHM:

CHM = (Q,E,D,I,E,(qo, xo))

where

Q

E=

D=

E

(qo,xo) =

Q1 x Q2 x ... x Q_

E 1 U E 2 U ... U E n

{(Xq, yq,Uq, fq, hq) " q =< qll,q.?2,...,qin n >Col x Q2 x ... x Qn}

combines all the dynamics of _j, j

{Iql 1 A 1q22 A ... A jrqinn :< q_l,q?2,.

is defined as above

(< ql,q20,...,q_ >,(xl,x2,...,x_))

= 1,2,...,n

..,q_tn >E Q1 x Q2 × ... x O n }

Therefore, we can define an execution of a CHM in the same way as that of an EHM.

4 CONTROL

4.1 Specifications

As stated in the previous section, a CHM can interact with its environment in two ways:

(i) by signal transmission (shared variables), and (2) by input/output-event synchronization. Formally,

a controller of a CHM is a hybrid machine C that runs in parallel with the CHM. The resultant system

CHMIIC
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is called the controlled or closed loop system. The objective of control is to force the controlled system

to satisfy a prescribed set of behavioral specifications.

For conventional (continuous) dynamical systems, control specification might consist of the require-

ment of stability, robustness, disturbance rejection, optimality and the like. For discrete-event systems,

specifications of required behavior are typically given as safety specifications, where a prescribed set

of unwanted behaviors or configurations is to be avoided, or liveness specifications, where a prescribed

set of termination conditions is to be met, or both.

For general hybrid systems, specifications can, in principle, be of a very complex nature incorpo-

rating both dynamic requirements and the logical (discrete) aspects.

In the present paper we consider only safety specifications given as a set of illegal configurations

Qb = {q =< qll,q2i2,...,q_ n >E Q1 × Q2 × ... × Qn : q is illegal}

that the system is not permitted to visit.

Our goal is to synthesize a controller that guarantees satisfaction of the above stated configuration-

based safety requirement. A controller that achieves the specification is then said to be legal.

In this paper, we shall consider only restricted interaction between the controller and the CHM by

permitting the controller to communicate with the CHM only through input/output-event synchronization.

Thus, we make the following assumption.

Assumption 2 C can only control the CHM by means of input/output-event synchronization. That is,

C can only control event transitions in the CHM.

Thus, the controller is assumed not to generate any output signals that may affect the CHM.

We shall assume further that C can control all the event transitions in the CHM. That is, all the

(externally triggered) event transitions are available to the controller. This leads to no essential loss

of generality because, when some of the events are uncontrollable, we can use the methods developed

in supervisory control of discrete-event systems (refs. 11 and 12) to deal with uncontrollable event
transitions. We shall elaborate on this issue elsewhere.

A legal controller C is said to be less restrictive than another legal controller C t if every execution

permitted by C t is also permitted by C (a formal definition will be given in the next subsection). A

legal controller is said to be minimally restrictive if it is less restrictive than any legal controller.

With a slight modification of the formalism that we shall present here, two or more controllers can

be combined by parallel composition to form a composite controller. An important characteristic of a

minimally restrictive controller is the fact that when it is combined with any other controller (legal or

not) that is possibly designed for satisfying some other specifications, such as liveness or optimality,

the combined controller is guaranteed to be safe (i.e., legal). Hence, no further verification of safety

will be needed. Furthermore, the minimally restrictive controller will intervene with the action of the

10



othercontrolleronly minimally; that is, whenit is absolutelynecessaryto do so in orderto guarantee
the safetyof the system.

4.2 Control Synthesis

As stated, our control objective is to ensure that the system CHM never enters the set of illegal

configurations Qb. Such entry can occur either via an event transition or via a dynamic transition.

Since all event transitions are at the disposal of the controller, prevention of entry to the illegal set

via event transitions is a trivial matter (they simply must not be triggered). Therefore, in our control

synthesis we shall focus our attention on dynamic transitions. Intuitively, the minimally restrictive legal

controller must take action, by forcing the CHM from the current configuration to some other legal

configuration, just in time (but as late as possible) to prevent a dynamic transition from leading the

system to an illegal configuration. Clearly, entry to a configuration which is legal but at which an

inescapable (unpreventable) dynamic transition to an illegal configuration is possible, must itself be

deemed technically illegal and avoided by the controller. Thus the controller synthesis algorithm that

we present below will iterate through the (still) legal configurations and examine whether it is possible

to prevent a dynamic transition from leading to an illegal configuration. In doing so, it will frequently

be necessary to "split" configurations by partitioning their invariants into their legal and illegal parts.

To streamline the ensuing analysis, we shall assume that the invariants of all legal configurations

are expressed in conjunctive normal form

I = (IllV...Vlll t)A...A(ImlV...Vlmlm)

where Iij=(Sij >_ Cij ) or Iij=(Sij <_ Cij). Similarly, all the guards are in conjunctive normal form

G = (GllV...VGlll)A...A(GmlV...VGmlm)

where Gij=(Sij > Cij ) or Gij=(Sij < Cij ), representing some semi-open intervals. 1 Without loss

of generality, we shall assume that the invariant is violated if and only if one or more of the guards is

true. (Otherwise, we can conjoin with the invariant the negation of the guards.)

Let us consider a legal configuration q. As discussed earlier, we assume that transitions leaving q

are either dynamic transitions or event transitions, and can lead to either legal or illegal configurations.

Therefore, we classify the transitions into four types:

1. Legal event transitions that lead to legal configurations

ETg(q, Qb ) = {(q, cr, qt).q __ qt A qt ([ Qb}

2. Illegal event transitions that lead to illegal configurations

K qt qtETb(q, Qb ) = {(q,_,qt) : q _ A E Qb}

1More generally, we only require that guards leading to illegal configurations be described by semi-open intervals.

11



3. Legaldynamic transitionsthat leadto legal configurations

G q/ qtDTg(q, Qb ) = {(q,G, qt) : q ---, A _- Qb}

4. Illegal dynamic transitions that lead to illegal configurations

DTb(q, Ob ) = {(q,G,q') : q G__ qt Aq' • Ob}

Since transitions in ETb( q, Qb) can be prevented by simply not being triggered, we need not discuss

them further. If DTb( q, Qb) = 0, then no dynamic transition from q leads to an illegal configuration and

hence there is no need to split q. Otherwise, if DTb(q, Qb) _ 0, we may need to split q as discussed

below. Let us consider the different cases.

Case 1 DTg(q, Qb) = 0

Since DTg(q, Qb) = 0, the only way to prevent transitions in DTb(q, Qb) from taking place is

for the controller to trigger an event transition (q, a, q_) C ETg(q, Qb), provided this set is nonempty,

thereby forcing the CHM from q to q_. However, such a transition may be legally triggered only

if the invariant Iq, is satisfied upon entry to qr. (Notice that if qr is the legal subconfiguration of

a configuration whose invariant has been split to a legal part and an illegal part, satisfaction of the

invariant Iq, is not automatically guaranteed when ,7 is triggered.) Thus, let us define wp(q,,7, qt) to

be the weakest precondition under which the transition (q, a, q_) will not violate the invariant lq, upon

entry to q_. Since some of the shared variables that appear in Iq, are possibly (re-)initialized upon

entering q_, the condition wp(q, or, q_) can be computed from Iq, by substituting into Iq, the appropriate

initial (entry) values of all the variables that are also output variables of q_. That is, if yj is the jth

output variable of q_ and Si = yj is a shared variable that appears in Iq,, then the value of Si must be
set to

S i = hj (x°,, Uq,)

If Iq _ wp(q,`7, q_), then we shall split the configuration q into two subconfigurations ql and q2

by partitioning the invariant Iq (and associating with each of the subconfigurations the corresponding

invariant) as

Iql = Iq A wp(q, o', q')

Iq2= IqA- wp(q, q')

Clearly, the dynamics of and the transitions leaving and entering the configurations ql and q2 are the

same as for q, except that the transition (q2,o,q _) is not permitted or is impossible (because of the

invariant violation). Also, the transition from ql to q2 is dynamic with the guard _wp(q,_, qt), and

from q2 to ql with the guard wp(q, o, q_).

Clearly, ql is legal in the sense that from it the transition to the legal configuration qt can be forced,

while q2 is not legal. From ql, the dynamic transitions in DTb(ql,Qb) and the dynamic transition
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(ql, _wp(q, cr, qt), q2) are illegal and must not be permitted. To prevent these transitions from taking

place in a minimally restrictive manner, cr must be forced just before any one of them can actually take

place. In other words, cr must be forced just before Iql becomes false. To find the condition under

which o needs to be forced, we note that, by our assumption on invariants, lqx will have the conjunctive

normal form

Iq, = (Pll V...VPII1)A...A(Pml V...VPmlm)

where Pij=(Sij >__Cij) or Pij=(Sij <__Cij ), representing semi-closed intervals. Therefore, we would

like to force a_.exactly on the boundary. Recall that, by assumption, the shared variables Si are rate-

bounded; that is, SiE[ri L, riU], where ri L and ri U are the lower and upper bounds, respectively. Thus,

for a predicate P = (Si <_ Ci), we define

S (si>_ci) ifri U >0
critical(P)

false otherwise

Similarly, for P = (Si >_ Ci),

S (si<_ci) ifri L <0
critical(P) I false otherwise

For conjunction of two predicates P = P1 A P2,

critical(P) = critical(P1)V critical(P2)

and for disjunction of two predicates P = P1 V P2,

critical(P) = critical(P1) A critical( /92)

The condition under which the transition (q, or, q/) will be forced is then

critical( Iql ) = critical( Iq A wp( q, a_, q') )

If there are more than one legal event transition in ETa(q, Qb), then we shall split q into ql and

q2 as follows.

Iql = [q A (V(q,g_,q,)EETg(q,Qb)wp(q, a_q.,qt) )

Iq2 = Iq A _(V(q,a__,q,)EETg(q,Qb)Wp(q, 2, qt) )

The condition under which a legal event transition (q, o, qt) needs to be forced is given by

critical( Iql ) A wp(q, n_q_,q_)

13



Case 2 ETg(q, Qb) =

Since ETg(q, Qb) = 0, the transitions in DTb(q, Q6) will be prevented from taking place only if

they are either preempted by some dynamic transitions in DTg(b, Qb) or will never take place due to

the dynamics at q.

Note that, because of configuration splitting, the target configuration of a dynamic transition guarded

by a guard G may depend on the dynamic condition at the source configuration at the instant when G
I

becomes true. Thus, if the configuration q/is split into q_ and q2, then we may have either (q, G, q_) E

DTg(q, Qb) or (q, G, q_2) E DTb(q, Qb), depending on the dynamic conditions. To deal with such cases

effectively, it will be convenient to modify (q, G, qt) by the following equivalent dynamic transition

(q, G A wp(q, G, q'), qt)

where wp(q, G, qt) is the weakest precondition under which the transition (q, G, qt) will not violate the

invariant lq, upon entry to qt. wp(q, G, qt) is calculated in the same way as wp(q, a, q_).

To find the condition under which a dynamic transition (q, G, qt) E DTb(q, Qb) will be preempted

by another dynamic transition (i.e., (q, G, qt) will not take place), let us consider first the time at which

a predicate will become true. We begin by considering an atomic formula

P=(& >

Suppose that at a given instant t at which Si(t) = Si, P is false; that is, Si<Ci. Then the interval of

time that will elapse before P can become true is bounded by the minimum value

Train(true(P)) = { oo(Ci- Si)/ri U otherwiseifri U > 0

and the maximum value

Tmaz(true(P)) = { oo(Ci- Si)/ri L otherwiseifri L > 0

where, as before, ri L and ri U are the lower and upper bounds of 5', respectively.

If, at the instant t, P is true, then clearly Train(true(P)) = Tmaz(true(P)) = O.

Similarly, if P is given by

P=(& < ci)

then if, at the instant t, P is true, Train(true(P)) = Tmaz(true(P)) = O; otherwise, the minimum
interval is

Train(true(P)) = { oo(Ci- Si)/ri L otherwiseifri L < 0
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and the maximum interval is

I (Ci-Si)/ri U ifri U <0
Tmax(true( P) ) I oc otherwise

For conjunction of two predicates, P = P1AP2, it is clear that

Tmin (true(P)) = max {Tmin (true(P1) ), Train (true(t=)2) ) }

Tmaz( true( P ) ) = max {Tmaz( true(101 ) ), Tmaz( true( P2) ) }

and for disjunction of two predicates, P = P1VP2

Train (true(P)) = rain {Tmi n (true(l:)1) ), Train (true(P2) )}

Tmaz( true( P ) ) = .tin {Tmax( true( l:)l ) ), Tmax( true( /:)2) ) }

Also, if a predicate is always false: P = false, then Train(true(P)) = Tmax(true(P)) = oz.

Now, the dynamic transition (q, G, qP) C DTb(q, Qb) will be preempted by another dynamic tran-

sition, provided Iq, the invariant of q, becomes false before G A wp(q, G, ql) becomes true. The earliest

time that G A wp(q, G, q_) will become true is Tmin(G A wp(q, G, qt)) and the latest time that Iq will

become false is given by Tmax(false(Iq)) = Tmaz(true(_Iq)). It is clear that to ensure that the

transition (q, G, qP) will not take place, it must be required that the following preemptive condition 2

pe(q,G,q') = (Tmin(true(G A wp(q,G, qt))) > Tmax(false(Iq)))

be satisfied. Therefore, we shall split the configuration q into two subconfigurations ql and q2, by

partitioning the invariant Iq as

Iql = Iq A pc(q, G, qt)

Iq2 = lq A--,pe(q,G,q')

Clearly, the dynamics of and the transitions leaving and entering the configurations ql and q2 are the

same as for q, except that the transition (ql, G, qt) is now impossible.

If there are more than one illegal dynamic transition at q, then we shall split q into ql and q2 as

follows.

Iql = Iq A (A(q,G,q,)eDTb(q,Qb)Pc(q, G, q'))

Iq2 = Iq A --,(A(q,e,q,)eDTb(q,Qb)PC(q, G, q') )

2We take the convention that if Tmin(true(G A wp(q,G, qt))) = oc, then pc(q,G,q t) = true even if

Tmax( false( Iq ) ) = cx_.
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General case That is, we require neither ETg(q, Qb) = 0 nor DTg(q, Qb) = O.

In this general case, we can either rely on legal dynamic transitions to preempt the illegal dynamic

transitions or, if this does not happen, force some legal event transitions. Therefore, we shall split q

into ql and q2 as follows. 3

lql = lq A ((A(q,G,q,)_DTb(q,Qb)PC(q,G, q'))V (V (q,a_,q,)eETg(q,Qb)wp(q,cr,q')))

Iq2 = Iq A (-_( A(q,G,q,)eDTb(q,Qb)PC(q, G, q') ) A -_(V(q,a,q,)eETg(q,Qb)wp(q, or, q') ) )

The condition under which a legal event transition (q, a, qJ) needs to be forced is now given by 4

critical( Iql ) A wp(q, a, q') A (-_( A(q,G,q,)eDTb(q,Qb)pc(q, G, q') ) )

Note that if we adopt the convention that

A(q,G,q,)EDTb(q,Qb)Pc(q, G, qt) = true if DTb(q, Qb) = 0

V(q,a_,q,)eETa(q,Qb)wp(q, a_, q') = false if ETg(q, Qb) = 0

then this general case covers all the cases above, including the case when DTb(q, Qb) = 0.

From the above discussions, we can now formally describe our synthesis algorithm.

Algorithm 1 (Control Synthesis)

Input

• The model of the system

CHM = (Q,E,D,I,E,(qo, xo))

• The set of illegal configurations

QbC_Q

Output

• The controller

C= (Qe, EC, DC, IC, Ee,(q_,x_))

3If (q,G,q') e DTb(q, Qb) cannot be prevented from occurring, then we must consider q as illegal. In that case

Iq, = false and Iq2 = lq.
_lThere is a possible complication if the newly defined guards form an instantaneous loop of consecutive transitions. If

this occurs, further analysis will be required.
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Initialization

1. Set of bad configurations

BC := Qb;

2. Set of pending configurations

PC := Q - Qb;

3. New set of pending configurations

NPC := O;

4. For each qEPC, set its configuration origin as

CO(q) = q;

Iteration

5. For all q E PC do

Iql := Iq A ( (A(q,G,q,)EDTb(q,BC)PC(q, G, qt) ) V (V (q,a_,q,)EETg(q,BC)wp(q, o', qt)));

Iq2 := Iq A ( _( A(q,G,q,)EDTb(q,BC)PC(q, G, qt) ) A _(V (q,g_,q,)EETg(q,BC)wp(q, _, qt)));

If Iql ¢ false, then

If Iq2 ¢ false, then

6. If PC = NPC, go to 8

7. Set

NPC := NPC U {ql};

CO(q ) := CO(q);

BC := BC U {q2};

PC := NPC;

NPC := O;

Go to 5
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Construction of C

8. Define vertices, events, and dynamics

QC := PC;

Ec := Eu{O : a E E};
D e := O;

9. Define transitions

E c := {(q, critical(lq) A wp(q,a, q') A (-_(A(q,G,q,,)EDTb(q,BC)PC(q, G, q"))) _ -d, q') :

q, q' EQ cA(CO(q), or, CO(q') )EE} ;

E c := EcU {(q, wp(q, cr, q') A O"---*N,q'): q,q'EQCA(CO(q),ff.,CO(q'))EE};

10. End

Therefore, the controller C has no dynamics. Its vertices are copies of the legal configurations of

CHM that survive after the partition. Its events include the output events _ and the input events 6- from

the environment or other controllers. Its transitions are of two types: (1) dynamic transitions that are

triggered when the CHM is about to become potentially illegal, and (2) guarded event transitions that

are triggered by input events.

Another controller D can be embedded into C as follows. First, all the output events _ in D are

replaced by _ to obtain/). Then the embedded control system is given by

CHMIICIID

We can now prove the following.

Theorem 1 If Algorithm I terminates in a finite number of steps and no sequence of instantaneous

transitions forms a loop, then the controller synthesized is the minimally restrictive legal controller in

the following sense.

1. For any controller D, an execution in CHM[[C[[[9 will never visit illegal configurations Qb.

2. For any legal controller D, an execution is possible in CHMIID if and only if it is possible

in CHMIICIID.

Proof

Since Algorithm 1 terminates in a finite number of steps and no sequence of instantaneous transitions

forms a loop, the controller is well defined. In particular, time progresses as execution continues and

during any finite interval of time only a finite number of transitions take place.
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To prove part I, it is sufficient to show that an execution in CHMIICIID will only visit configu-

rations in

Qc c_Q - c2b

If this is not the case, then there exists an execution

el,tl en,tn
q0 _ ql _ ...---+qn-1 ---+ qT_

such that q0, ql, ..., qn-1 E Qc but qn _[ Qc.

Let us consider the transition from qT_-I to qn. It cannot be an event transition because such illegal

event transitions are not permitted by C. If it is a dynamic transition, then, since it is not preempted at

qn-1, it implies that qn-1 {/Qc, a contradiction.

To prove part 2, let us assume that

el ,t l en ,tn
qo -----+ ql -----+ ...-'--+qn-1 ----+ qn

is a possible execution of CHM IID but the last transition from qn-1 to qn is impossible in CHMIICIID;

that is, qn f[ Qc. Then by our construction of qn, there exists a continuation of the execution in CHM[ [D

en+l ,tn+l
% _ qn+l _ ...---*qn+m

that will lead to an illegal configuration qn+m E Qb. This execution cannot be prevented by D, a

contradiction to the hypothesis that D is legal.

On the other hand, if

el,tl en,tn
qo -'--+ ql ----+ ...----+qn-1 "'-+ qn

is a possible execution of CHMt IC[ ID but the last transition from qn-z to qn is impossible in CHM IID,

then this last transition must be triggered by a dynamic transition in C when the following guard becomes

true:

Gc = critical ( Iqn_ 1) A wp( qn_l , cr, qn ) A (-'( A(qn_ ,,G,q,)EDTb(qn_ l,BC)PC( qn-1, G, q') ) )

Since the transition (qT_-lGc, qn) does not take place in CHM[ID, by our construction of Gc, the next

transition

qn-1 eln--_ qln

could lead to q_ f[ QC. By the same argument as above, we conclude that D is illegal, a contradiction.
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5 STEAM BOILER EXAMPLE

In this section, we shall illustrate application of the control synthesis algorithm developed in the

previous section by synthesizing a controller for the familiar steam boiler example that was proposed

in reference 19 as a benchmark problem for modeling and verification of hybrid systems (see also, e.g.,

references 20 and 21 ). This example was proposed as a benchmark problem because it has many essential

properties that are found in some commonly used industrial processes, such as chemical reactors, oil

refineries, etc.

We use a simplified model of the steam boiler described in reference 19. Some parameters are set

at the same values as in reference 20. This simplified model captures the essence of the control problem

addressed in this paper.

The steam boiler consists of a water tank (boiler) equipped with two pumps (instead of four pumps

as in reference 19). Each pump can supply water to the boiler at the rate of 4 liters/sec. The pump can

be switched on (event start_i) and off (event stop_i) by a controller. Due to the fact that the pump

cannot balance the presure inside the boiler instantaneously, there is a five-second delay before water

starts pouring into the boiler after the pump is switched on.

Steam is generated by an unmodeled mechanism. The rate at which steam is generated is therefore

nondeterministic. But we do know that the rate is bounded between 0 and 6 liters/sec.

The control objective is to maintain the water level L in the boiler between the minimal level of

5 liters and the maximal level of 220 liters. This is achieved by turning the two pumps on and off.

Since we are interested in synthesizing the minimally restrictive controller, our controller will accept

(i.e., permit) all behaviors (turning pumps on and off) that do not imply possible violation of the level

constraints and will intervene by forcing the pumps (on or off) only whenever it is absolutely necessary

to do so in order to guarantee constraint satisfaction.

The controller can sample the water level in the boiler only every five seconds. Since this implies

sampled decision making, there is no loss in generality in assuming that control (turning the pumps on

and off) can only be applied at the sampling instants.

In summary, the steam boiler to be controlled is modeled by the CHM in figure 3.

As stated above, the parameters are given by

P1=4, /°2--4,

VL=O, VH=6,

L L = 5, L H = 220

Without changing the nature of the problem, but to avoid nondeterminism in the controller, we shall

assume that Pump 1 will be turned on before Pump 2 can be turned on; and Pump 1 cannot be turned

off before Pump 2 is turned off. Therefore, the pump logic is shown in figure 4.
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Figure 3. Steam boiler system.

Thus, the configurations of the CHM to be controlled can be denoted by the legal configurations

ql =< off1, off2, normal >

q2 =< startin91, off2, normal >

q3 =< Onl,of f2,norma I >

q4 =< starting1, starting2, normal >

q5 =< onl, startin92, normal >

q6 =< onl,on2, normal >

and illegal configurations where normal ([L >__5] A [L _< 220]) is replaced by high ([L > 220]) or

low ([L < 5]). That is,

Qb =< high > U < l°w >

Because of the delays in turning the pumps on and the delays caused by sampling, there are config-

urations in < normal > from which unavoidable dynamic transitions may lead to illegal configurations

in Qb. Therefore, we must partition < normal > properly using the synthesis algorithm.
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Figure 4. Pump logic.
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Before applying the algorithm, we first replace the guarded event transitions by dynamic and event

transitions. Also, note that since C1 = (72 = C whenever they are not equal to 0 or 5, only one clock

is sufficient (to be denoted by C). Thus, the equivalent CHM is shown in figure 5, where, for clarity,

the illegal configurations are not drawn.

6 !

We shall only illustrate how the algorithm performs on q6 and q , where

1qo = [L > 5] A [L < 220 IA[0<5]

/o' = [L > 5IA [L _< 220 IA [C > 51

By our algorithm,

wp(q6',stop_2, q 3') = [L >_ 5] A [L < 220]

Therefore, q6' will not be split. On the other hand, q6 will be split as follows (note that at q6, L E [2, 8]).

pc(q 6, [L > 220], < illegal >)

= (Tmin([L > 220]) > Tmaz([L < 5] V [L > 2201V [C >__5]))

= ((220- L)/8 > min{cx_,(220- L)/8,5-C})

= ((220 - L)/8 > (5 - C))

=(L< 180+8C)
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starl:-I !

[C.>5]

q6

Figure 5. Composite hybrid machine.

stop_2

Similarly,

pe(q 6, [L < 5], < illegal >)

= (Tmin([L < 5]) > Tmaz([L < 5] V [L > 220] V [C _> 5]))

= (oo > Tmaz([L < 5] V [L > 220] V [C >_ 5]))

= true

Therefore, q6 will be split into ql6 and q6 with invariants

= Iq6 Apc(q6,[L > 220], < illegal >)Apc(q6,[L < 5], < illegal >)

= [L > 5] A [L < 220] A [C < 5] A [n < 180+8C]

= [L> 5]AIV< 51A[L< 180+ SC]
= [L _>5]A [L _<220] A [C < 5]A [L >_ 180 + 8C]
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In the next iteration, q6' will be analyzed as follows. There are five transitions leaving q61:

(q6,[c_5],
(q6',[c_>5],
(q6', [L < 5], < illegal >)

(q6' [L > 220], < illegal >)

(q6', stop_2, q 31)

It can be calculated that

m(q6',[c>51,
= (Tmin([C>5] A [L > 180]) > Tmax([L < 5] V [L > 220] V [C < 5]))

= (max{O,(180- L)/8} > min{oc,(220- L)/2,0})

= ((180- L/8 > O)

= [L < 180]

pc(q 6', [L < 5], < illegal >) = true

pc(q 6', [L > 220], < illegal >) = true

wp(q6',stop_2, q 3') = In _> 5] A [n _< 220]

Therefore q61 will not be split and event stop_2 will be forced under the condition

6 I
critical( I 6, ) A wp(q , stop_2, q3')A

_(pe(q 6 , [C_>5], q6)A pc(q 6', [L < 5], < illegal >)A pc(q 6', [L > 220], < illegal >))

= ( [L _< 5] V [L > 220] V [C _< 5] ) A [L > 180] A [L > 5] A [L < 220]

6 ISince [C < 5],[L > 5],[L < 220] are satisfied at q , the forcing will actually take place when

[L > 1801.

Table 1 summarizes the results of the synthesis algorithm at each iteration.
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Table I. Steamboiler controller synthesis

Initial First iteration Seconditeration Third iteration

ql [L>_5] [L > 35- 6C1 [L > 35- 6C1 [L > 65- 6C1

ALL<220] A[L_<2201 ALL_<220] A[L<2201

A[c < 5] A[c < s] A[c < s] A[c < 5]

ql' [L>5] [L>_51 [L > 35] [L > 351

A[L<220] A[L<220] A[L<220] A[L<220]
A[c_>5] A[c>_s] A[c_>s] A[c_>5]

q2 [L>_51 [L > 35- 6C1 [L > 35- 6C] [L > 45- 6C]

A[L_<2201 A[L_<220] A[L_<220] A[L<220]

Ale < 5] A[c < s] Ale < s] A[c < 5]

q2' [L>_5] [L_>5] [L > 35] [L > 35]

ALL_<220] A[L_<220] A[L_<220] A[L_<220]

A[c>_s] A[c>5] A[c___sI A[c>5]

q3 [L>5] [L > 15- 2C] [L > 15- 2C] [L > 25- 2C]
A[L_<220] A[L_<200 + 4C] ALL_<200 + 4C] A[L <_200 + 4C]

Ale < 5] A[c < 51 Ale < 5] Ale < 5]

q3' [L>51 [L>51 [L > 15] [L > 15]

A[L<220] A[L<220] A[L<220] A[L_<220]
A[c>s] A[c>5] A[c>_5] A[c>_5]

q4 [L>_5] [L > 35- 6C] [L > 35- 6C] [L > 35- 6C]

A[L_<220] A[L<_220] A[L<220] ALL<220]

A[c < 5] A[c < 5] A[c < 5] Ale < 5]

q5 [L>_5] [L > 15- 2C1 [L > 15- 2C1 [L > 15- 2C1

A[L_<220] AlL < 200 + 4C] A[L < 200 + 4C] A[L < 200 + 4C]

Ale < 51 A[c < 5l A[c < 51 A[c < 5]

q6 [L_5] [L>5] [L:>5] [L>5]

A[L<220] A[L < 180 + 8C] A[L < 180 + SC] A[L < lS0 + SC]

A[c < 5] A[c < 5] A[c < 5] A[c < 51

q6' [L>5] [L>_5] [L_5] [L>5]

A[L<220] A[L<_220] A[L<_220] ALL_<220]

Atc>_s] A[c_>s] A[c>5] A[c>_5]

Finally, the minimally restrictive controller is shown in figure 6.
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Figure 6. Steam boiler controller.
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