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Abstract 
A new stochastic motion estimation method based on the Maximum A PosteriodProbability 
(MAP) criterion is developed. Deterministic algorithms approximating the MAP estimation 
over discrete and continuous state spaces are proposed. These approximations result in known 
motion estimation algorithms. The theoretical superiority of the stochastic algorithms over 
deterministic approximations in locating the global optimum is confirmed experimentally. 

I. INTRODUCTION 

Substantial work has been carried out recently in the application of stochastic models to the es- 

timation of two-dimensional motion. Based on Markov random field (MRF) models, the problem has 

been formulated using the MAP criterion and solved by stochastic [i],[2],[3],[4] and deterministic [5],[6] 

methods. Although both approaches have proved successful, no experimental comparison has been car- 

ried out. In this paper we extend our previous work by developing stochastic MAP estimation over a 

continuous state space of solutions. Also, by instantaneously "freezing" a Markov chain produced by a 

stochastic relaxation algorithm, we propose two deterministic estimation methods. These approximations 

result in known motion estimation algorithms. 

2. FORMULATION 

2.1 Terminology 

Let u and g denote the true underlying and the observed time-varying images, respectively. Let g 

be a sample from a random field (RF) G, and be quantized in amplitude and sampled on a lattice Ag in 

R 3. Let (x~t) be a site in Ag, where x and ~ denote spatial and temporal positions, respectively. Let 

also d be the true (unknown) displacement field associated with u, Since it is not feasible to estimate d 

on a continuum of spatial positions, it will be estimated on a lattice A d in R 3, which may be different 

than Ag as in the case of temporal interpolation. 

It is assumed that Ag, A d are rectangular lattices with horizontal, vertical and temporal sampling 

periods (Tgh, T~,Tg) and (Th, T~,Td), respectively. Each field of the image sequence contains Mg 
picture elements, and each motion field consists of M d vectors. 

The true displacement field d is assumed to be a sample (realization) from random field D. Let d 

denote any sample field from D and allow d be an estimate of the.true displacement field d. Assuming 

a linear motion trajectory between two images we define a displacement field as follows: 
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The displacement field d defined over A d is a set of 2-D vectors such that for all ( x i , t )  E A d 

the preceding image point (x i  - At .  d(x i ,  t), t_) has moved to the following point ( x / +  (1.0 - 
/ 

t [t ] As. T. and ,+ + (1.0 At) 
I 

z2t) .d(xi~t) , t+),wherez~t=T~ a -  T~ a ~ t _ = t -  -- . 

To model abrupt changes in displacement vector length and/or orientation we use the concept of motion 

discontinuity. The true motion discontinuities I are defined over continuous coordinates (x, t), and are 

unobservable like the true motion fields. They can be understood as indicator functions for each (x, t) .  

We assume that I is a sample from a RF L. Let "[ be an estimate of I. The RF L will be called a line 
process, its sample l will be called a line field while individual discontinuities from l will be named line 
elements. We will estimate l on a union of shifted lattices ¢I  = ~hU~v, where ~h =Ad  4-[0, T~/2, 0] T 

and ~v = Ad-k iTS~2, O~ 0] T are orthogonal cosets of horizontal and vertical line elements, respectively. 

We assume that the random field Dt is defined over the state space Sd = ($~I) Ma, where $~] is the 

single vector state space. Two cases of S~I are considered: a discrete state space (square 2-D grid) and 

a continuous state space R 2. It is also assumed that the random field L is defined over the discrete state 

space SI=(S~) M~, where $~ is the single line element ~tate space. Finally, let the subscript t denote the 

restriction of a random field (RF) or of its realization to time t. 

2.2 MAP estimation criterion 

To estimate the pair (de,/t) of true displacement and line fields corresponding to  image u on the 
A 

basis of the observations g, a pair (dt, It)ESdXSl which maximizes the a posteriori probability P(Dt=  
dt~ Lt=Ttlgt_,gt+) must be found. Applying Bayes rule this probability can be factored as follows [2] 

P(Dt = d t ,  Lt = ltlgt_,gt+) = P(Gt+ = gt+ldt,lt,gt_)" P(Dt = dtllt,gt_)" P(Lt = lt[gt_) (1) 
P( Gt+ = gt+ Igt_ ) 

Note that since the probability in the denominator of (1) is not a function of dr, it can be ignored when 

maximizing (1) with respect to (c]t,Tt). If displacement vectors are defined over a continuous state space 

$~! = R2, then Bayes rule for mixed random variables results in a similar probability distribution where 

a priori probability P(Dt = d t  ll~t, gt,) is replaced by the probability density p(clt llt, gt_ ). 

2.2.1 Displaced pel difference model 

To estimate motion from images a structural model relating motion vectors and image intensity values 

is needed. Disregarding illumination and occlusion effects we assume that over the time interval [ t_, t+]  

the intensity of image u along d is constant i.e., u(x- t - (1.0-At) ,  d(x, t), t+ ) -u (x -43 t ,  d(x, t)~ t_) = O. 

Extrapolating this relationship to the observed image g, which is a transformed and noise-corrupted 

version of u, we model the displaced pel differences (DPDs) 

~(d(x.  t), x~, t, At) = ~(x~ + (1.0 - At) .  a ( ~ ,  t), t+) - ~(x~ - A t .  a ( x .  t), t_) 

by independent Gaussian random variables (~(x,t) denotes an intensity value at (x, t)  ~Ag obtained by 

interpolation). Consequently, the likelihood P(Gt+ =gt+ Jdt,lt,gt_) from (1) can be expressed as the 

following Gaussian distributiont 

P(Gt+ = gt+ Ic]t, gt_ ) = (2r~2) -Ma/2 " e-U"(g'+ Id,,g,_)/2~, (2) 

Note that dt constitutes a complete descriptlon of motion and a line field It is only an aid in estimation of ~. Hence, 
the conditioning on L~ in P(G~+ = g~+ld~,lt,g~_) can be dropped. 
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with energy Ug defined as follows 
Md 

ug(g~+ Id. gt_ ) = ~ [~(~(xi, t), xi, t, ~t)]  ~. (3) 
i=1 

2.2.2 Displacement field model 

Since motion fields are Smooth functions of spatial position x (fixed t) except for occasional abrupt 

changes in vector length and/or orientation, we will model displacement fields dt and displacement 

discontinuities It by vector and binary MRFs (Dt ,L t )  [2],[4],[6]. 

Recall that in ( I )  the a pr ior i  displacement model is expressed by the probability (density) P (Dt  = 

d t l l t , g t_ ) .  Since the discontinuity model expressed by P ( L t  = I t lgt_)  depends on the data gt_, we 

assume that Dt  can be described by the Gibbs distribution: 

P(Dt = drill,Or_) = P(Dt = drill) = Z, e -Ua(dtlh)l/~d, (4) 

where Z d, fld are constants and Ud(dtll~ ) is an energy function defined as: 

Ud(dttlt ) = ~ Vd(dt,cd).  [1 -- I(<xi, xj>,t)].  (5) 
C d :{XI ,Xj } EC d 

c d is a clique of vectors, while C d is a set of all such cliques defined over lattice Ad. ( < x i ,  x j  >,  t) C: @l 

denotes a site of line element located between vector sites x i  and x j  which belong to A d. V d is a 

potent ia l  function crucial to characterization of the properties of displacement field dr. 

We specify the a priori  displacement model by using l l d (x i , t ) -  d(xj , t) l l  2 as the potential function 

V d for each clique c d = { x l , x j ) ,  as well as the first-order neighbourhood system 2( "I with 2-element 

horizontal and vertical vector cliques [2]. 

2.2.3 Line field model 

Let the line field model be based on a binary MRF I,t with the Gibbs probability distribution 

P(L~ = Itlgt_) = l . - u z ( t ,  lg,_)/Z, Uz(Itlgt_) = ~ Y}(lt,gt_ ,cz), (6) 
ZI ~ ' cz ECz 

where Z 1, f l l  are the usual constants, c I is a line clique and C l is a set of all line clique s defined over 

~1. The line potential function V/ provides a penalty associated with introduction of a line element. 

Separate neighbourhood systems are associated with cosets ¢h and Cv [4]. To model the smoothness 

and continuity of motion boundaries as well as to disallow formation of isolated displacement vectors 

inconsistent with their neighbours we chose the potential ~4 defined over four-element cliques [4]. We 

also used potential V/2 for two-element cliques to prevent formation of double contours. 

Since the a pr ior i  probability of the line process (6) is conditioned on the observations, the image 

information gt_ should be considered when computing the line samples l t. Similarly to Hutchison et al. 

[7] we assume that an introduction of a motion boundary coincides with an intensity edge. We use the 

following potential function for one-element cliques: 
I ~ "  th(<Xi 'Xj>' t)  for horizontal c 1 = {x i ,x j}  

Vl, (l.gt_,Cl) ~ ' l v ( < x i , x j > , t )  for verticalc l = { x i , x j } ,  (7) 
L 

where lh, Iv are horizontal and vertical line elements, ~Th, ~7 v are horizontal and vertical components of 

the spatial gradient at (< x i , x j  >, t), and cz is a non-negative constant. The total line potential function 

Vl ( I t ,g t_ ,c l )  is simply a sum of ~ ,  ~12 and ~ i '  
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2.3 A posteriori probability 

Combining (2), (4) and (6) i t follows that probability (1) is Gibbsian with energy function: 

U(at, l~,gt_,gt+) = A,. U,(g~+lat,gt_) + Aa. Ud(a~ll~) + At. uz(Ytlgt_). (8) 

Theconditional energies are defined in (3), (5) and (6) respectively, and Ag = 1/(2~2), A d = 1/fl d, 
^ ^ 

)~l=l/f l l .  The MAP estimation can be achieved by minimization of energy (8) with respect to (dr, It). 
Note that the minimized energy consists of three terms and can be viewed as regularization: Ug describes 

the ill-posed matching problem of the data gt_, gt+ by the motion field d, while U d and U l are responsible 

for conforming to the properties of the a priori displacement and line models. 

3. SOLUTION TO MAP ESTIMATION 

The minimization of energy (8) is very complex because of the number of unknowns involved and 

because of multimodality of the objective function (dependence on dt via g). We will carry out the MAP 

estimation using simulated annealing and appropriate deterministic approximations. 

3.1 Stochastic optimization via simulated annealing 

To implement the MAP estimation using simulated annealing [8], samples from MRFs Dt and Lt 

are needed as well as an annealing schedule to control temperature T. We will generate such samples 

using the Gibbs sampler [9] which, like any stochastic relaxation algorithm, produces states according 

to probabilities of their occurrence i.e., the unlikely states are also generated (however less frequently). 

This property, incorporated into simulated annealing, allows the algorithm to escape local minima unlike 

the case of standard methods. 

We will use the Gibbs sampler based on the a posteriori probability ( I )  with energy (8). The 

displacement Gibbs sampler at location .(xi, t) is driven by a (Gibbs) marginal conditional probability 

characterized by the following energy function [4] 
i ^ A C  ^ U~l(d(xi, t)ld t, tt,gt_, gt+) =Ag. [~a(xi, t), xi, t, At)]2+ 

Aa. F. lla(x.t)-d(xj,t)ll 2- [1-l(<xi,xj>,t)], (9) 
j: x~ Cr/a(xi) 

where a ~ =  {d ( x j , t )  : j ¢- i }  and ~/d(Xi) is a spatial neighbourhood of displacement vector at xi. 

Corresponding local energy function U[ driving the Gibbs sampler for It can be found in [4]. 

3.1.1 Discrete state space Gibbs sampler 

For each candidate vector d(x i ,  t)ES~, the marginal probability distribution is computed from the 

local energy (9). Then, two vector coordinates are sampled from this distribution. The necessity to obtain 

the complete probability distribution of a displacement vector at each x i is decisive in the computational 

complexity of the discrete state space Gibbs sampler. A similar procedure applies to line elements, except 

that the state space S~ is binary. 

3.1.2 Continuous state space Gibbs sampler for Dt 

We avoid a very fine quantization of S~ (to obtain the continuous state space) by approximating the 

local energy (9) by a quadratic form in dt so that the Gibbs sampler is driven b~/a Gaussian probability 

distribution. 
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Assume that an approximate estimate at of the true displacement field is known, and that the image 

intensity is locally approximately linear. Then, using the first-order terms of the Taylor expansion the 

DPD-~ can be expressed as follows: 

~(a(x~, t), x~, t, at) ~ ~(a(xi, 0 ,  xi, t, At) + (a(x~, t) - a(x~, 0 ) .  Vd~(a(x~, 0,  x~, t, At), 

where the spatial gradient of i-is defined as 

[~(d. (xi,t),xi, t, At) ] 
Vd~(a(x~, 0,  x~,t, At) = /~(d(x~,t) ,x~,  t, At) J" (10) 

and 7 "v are computed as an average of appropriate derivatives at the end points of vector d(xi,  t) 

[10]. Including the temperature T the local energy U~I can be written as follows 

t) la~,it, gt_, gt+ ) ~- .~.  [~d(xi ,  t), xi, t, At )+(d(x i ,  t ) - d ( x i ,  t )) .Vdr(h(xi ,  t), xi, t, U~l(a(xi, At)] 2 

+-~.  ~ ila(xi,o-a(x~,t)tt ~. [1-~(<x~,x~>,~) ] ,  
j: ~ d ( X ~ )  

where cl is fixed. It can be shown that the conditional probability density with the above energy is a 2-D 

Gaussian with the following mean vector m at location (xi, t) [10]: 

= a(x~, t) - ~ var~(a(x~, t), X~, t, At), m 

where the scalars ~i and #i are defined as follows 

ci = ~a(x~,  t), xi, t, At) + (a(xi, t) - a(xi, t)). va~(a(x~, t),,:~, t, zxt) 

#~ = ¢ ~  + IlVd-,~a(xg, t), x .  t, mt)ll 2, 
(11) 

and d(xi ,  t) is an average vector 
1 a(x~,t) = ~ ~ a(xj , t ) .  [1-7(<x~,x:.>,t)] ,  (12) 

j:xj 6r/a(xl) 

with {i = ~ j :  xjEr/a(xi)[1-'/(< xi, xj  >, t)]. Note that averaging is disallowed across a motion boundary, 

which is a desirable property. The horizontal and vertical component variances cry, cry, as well as the 

correlation coefficient p, which comprise the covariance matrix, have the following form 

41_ r [~@+[~(a(x~,t),x~,t,z~t)] ~ 
c~2 ] 2~i2~d#i [ ( i ~  + [~(a(xi , t) ,xi ,  t, At)] 2 

r-~(a(x~, t), x~, t, at)ia(a(x~, t), x~, t, zxt) po,.cry 
2{i.~dtti 

The initial vector d can be assumed zero throughout the estimation process, but then with increasing 

displacement vector estimates the error due to intensity non-linearity would significantly increase. Hence, 

it is better to "track" an intensity pattern by modifying a accordingly. An interesting result can be 

obtained when it is assumed that at every iteration o f  the Gibbs sampler a = d i.e., the initial (ap- 

proximate) displacement field is equal to the average from the previous iteration. Then, the estimation 

process can be described by the following iterative equation: 

a,,+~(x~, t) = a"(x~, t) - ~. v~(a"(x~, t), x~, t, z~t) + .~, 03) 

where n is the iteration number, and el, #i and the covariance matrix are defined as before except for 

a = d. At the beginning, when the temperature is high, the random term n i has a large variance and 
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the estimates assume quite random values. As the temperature T ~0 ,  a~ a 2 paxay get smaller, thus f y ,  

reducing hi. In the limit the algorithm performs a deterministic update. Note that the variance cr~ 2 of 

the horizontal vector component for fixed value s of )~9,Ad,)~ 1 and :W decreases with growing 7rX. It means 

that when there is a significant horizontal gradient (detail) in the image structure the uncertainty of 

the estimate in horizontal direction is small. The same applies to ~ .  Hence, the algorithm takes into 

account the image structure in determining the amount of randomness allowed at a given temperature. 

Note the similarity of the iterative update equation (13) to the update equation of the Horn-Schunck 

algorithm [ t l ] .  Except for ei equal to DPD instead of the motion constraint equation and except for 

different image model used, they are identical for T=0, It is interesting that similar update equations 

result from two different approaches: Horn and Schunck establish necessary conditions for optimality and 

solve them by deterministic relaxation, while here a 2-D Gaussian distribution is fitted into the conditional 

probability driving the Gibbs sampler. 

3.2 Deterministic optimization using steepest descent method 

3.2,1 Discrete state space 

Note that for T=0 (deterministic update) the discrete state space Gibbs sampter generates only 

states with minimum local energy (9). Hence, the final result is only an approximation to the MAP 

estimate. 

Besag [12] proposed a similar approach called iterated conditional modes (ICM). He argued that since 

it is difficult to maximize the joint a posteriori probability over the complete field, it should be divided 

into a minimal number of disjoint sets (or colours) such that any two random variables from a given 

set are conditionally independent given the states of the other sets. Using this approach displacement 

vectors or line elements can be computed individually (e.g., exhaustive search) for each location (xi, t) 

one colour at a time. Note that also this technique does not result in maximization of probability ( i ) ,  but 

provides separate MAP estimates for joint probabilities defined over corresponding colours. The difference 

between the ICM method and the Gibbs sampler with T=0 is only the update order of variables [10]. 

Both techniques can be Classified as a (pel) matching algorithm with smoothness constraint. 

3.2.2 Continuous state space 

Let the displacement vector state space be continuous (S~I -- R2). The energy function under 

minimization (8) is non-quadratic in dt as well as in Ii. We will perform interleaved optimization with 

respect to cl t and lt. l f l t  is known, then U I in (8) is constant and only minimization of )~gUg 4 ),dUd 

must be performed. Using the linearization of the DPD ~ and establishing necessary conditions for 

optimality at each location xi  as well as assuming that cl = d,  it follows that the iterative update for 

this deterministic method is [10]: 

dn+l (x i ,  t) = -dn(x i ,  t)  - ~ V T r ( d n ( x i ,  t), xi, t, At),  (14) 

where ei and #i are defined in (11) with d = d. To resemble the Gibbs sampler as close by as possible, 

the Gauss-Seidel relaxation will be used in (14) rather than the Jacobi relaxation. Once an estimate dt 

is known, an improved estimate l~ should be obtained. For a fixed dt the minimized energy'AdU d + AIU l 

is non-linear in lt. Since l '(xi, t ) is binary for each i, the ICM method reported above can be used. 
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The above approximation to the continuous state space MAP estimation is a spatio-temporal gradient 

technique which can be viewed as a modified version of the Horn and Schunck algorithm, except that: 
I. the modified algorithm (14) allows computation of displacement Vectors for a rbitra ry A d unlike 

the original Horn and Schunck algorithm in which A d = Ag+[0.5,0.5,0.5] T, 
2o the scalar ~i is a displaced pel difference in the modified version rather than a motion constraint 

equation: no temporal derivative is needed, 
3. the spatial intensity derivatives are computed from a separable polynomial model in both 

images and appropriately weighted (I0), instead of the finite difference approximation over a 
cube as proposed in [11], 

The ability to estimate motion for arbitrary A d is crucial for motion-compensated interpolation of 

sequences (original Horn-Schunck algorithm would require 3-D interpolation of motion fields). 

The use of ~ instead of the motion constraint equation in ci is important because it allows intensity 

pattern tracking thus permitting more accurate intensity derivative computation, and also does not require 

the computation of the purely temporal derivative (actually, ~ is an approximation to the directional 

derivative). The purely temporal derivative used in the Horn-Schunck algorithm is a reliable measure of 

temporal intensity change due to motion as long as small displacements are applied to linearly varying 

intensity pattern. Otherwise, significant errors may result, for example an overestimation at moving 

edges of high contrast. 

The deterministic algorithm (14) together with the ICM method for Iz is related to the algorithm 

proposed in [7]. The major differences are those reported above for the Horn-Schunck algorithm as well 

as the line potentials: the potential ~ l  for single-element cliques is binary (0 or c~) in [7] while here it 

varies continuously according to the local intensity gradient. 

4. EXPERIMENTAL RESULTS 

The algorithms described above have been tested on a number of images with synthetic and natural 

motion. Results for two of images with natural data and inter-field distance 7-60=I/60 sec. are presented 

below. 

To provide a quantitative test we generated test image I (Fig. 1(a)) with stationary background 

provided by the test image from Fig. l (b) and a moving rectangle ~ obtained from another image through 

low-pass filtering, subsampling and pixel shifting. This test pattern permits non-integer displacements 

so that there is no perfect data matching. Fig. 1(b) shows the test image 2 containing natural motion, 

acquired by a video camera. 

The stochastic relaxation used was based either on the discrete state space S~ with maximum 

displacement 4-2.0 pixels and 17 quantization levels in each direction or on the continuous state space 

R 2. The first-order displacement neighbourhood system and, if applicable, the line neighbourhood with 

four-, two- and one-element line cliques, as proposed in [4], have been used. The ratio Ad/Ag=20.0 

has been chosen experimentally, however, as pointed out in [10], even a change of 2 orders magnitude 

did not have an excessively severe impact on the estimate quality. The motion estimates presented in 

the sequel have been obtained from pairs of images (fields) separated by Tg = 2~-60. All estimates have 

been obtained with Keys bicubic interpolator [10] except for the discrete state space estimation applied 

to test image 2, when bilinear interpolation was used. 
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Fig. 1 
(a) (b) 

Test images: (a) synthetic motion, d~=[1.5,0.5], I~1 = 45×20, (b) natural motion 
(white frame outlines the area used in estimation: (a) 77×49, (b) 221×69). 

SE =========================" "2222:•" 

. ' ~ .  . . . . . . . . .  :~. . . . . . .  ~,.~ 

~SE=(0 .9408,0 .1599) ,  b=(0.8100,0.3467) 
(b) deterministic ICM 

Fig. 2 Discrete state space MAP and ICM estimates for the test image I: h d = A  9. 

Since the true motion field is known for the test image with synthetic motion (except for the occlusion 

and newly exposed areas), it is possible to assess the quality of motion field estimates. The Mean Squared 

Error ( M S E )  and the bias (b) measuring the departure of estimate d from the known motion field ds, 

are computed within the rectangle and shown below appropriate estimates• 

Fig. 2 shows the discrete state space MAP and ICM displacement estimates from the test image 1. 

The stochastic MAP estimate is superior to the ICM estimate both subjectively and objectively (MSE,b). 
In both cases the zero displacement field has been used as an initial state. In other experiments ML 

estimates (Ad/Ag----0.0) have been computed and used as a starting point (as suggested by Besag for 

ICM estimation). The ML estimates were characterized by substantial randomness in vector lengths and 

orientations, which can be explained by the lack of a prior model. As expected the initial state had no 

impact on the stochastic MAP estimate, but the final ICM estimate was inferior to the ICM estimate 

presented above both subjectively and in terms of M S F .  
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14SE= (0.148o,o.025.6), b=(o.1139,0,09o9) 
(a) stochastic MAP 
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i4SE=(0.2543 0.0559), b=(0.282s 0.195s~ 
(b) modif ed H-S 
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.7 ..L2 . . . . . . . . .  2.22": : . : " : '~: : .  

. . . . . .  _ k ' /  

============================= ::~iiiiii: 

(SE=(0.4499,0.O592},  b=(0,5205,0.19041 
(c) original H-S 

Fig. 3 Continuous state space MAP, modified and original Horn-Schunck estimates for test 
image 1: Ad=Ag+[0.5,0.5,0.5] T. 

To compare the stochastic MAP estimate and its deterministic approximation (modified Horn- 

Schunck method) with the original Horn-Schunck algorithm (Fig. 3), the condition that A d = 

Ag+[0.5,0.5,0.5] T was imposed. Note that the Horn-Schunck algorithm produces the worst result, both 

subjectively and in terms of MSE.  The motion tends to be overestimated at strong edges (due to the 

purely temporal gradient), while it is underestimated in uniform areas• The deterministic approximation 

has produced a significantly lower ~IEE, and also subjectively the estimate is more uniform. Except 

for the visible triangle of underestimated displacements, the motion has been quite well computed. Su- 

periority of the stochastic approach is dear from Fig. 3.a. Subjectively this estimate is closest to the 

true motion, M S E  is the lowest of the three estimates and also the total energy is lower than for the 

deterministic approximation (original Horn-Schunck algorithm cannot be compared in terms of energy 

since is assumes different intensity model). 

Fig. 4 shows the stochastic and deterministic estimates for the plecewise smooth motion model. The 

parameters used are the-same as before. During experimentation we have observed that the ratio AI/~. d 

had to be substantially lower for the deterministic algorithm in order to obtain results comparable with 

the stochastic MAP estimation. This may be explained by explicit averaging used in the deterministic 

algorithm. The continuous state space MAP estimation uses similar averaging, but it also involves a 

randomness factor thus allowing switching line elements off and on,. even if motion discontinuity does 

not quite allow it. Note that both subjectively and in terms of M S E  the deterministic estimate is clearly 

inferior• 

Fig. 5 shows t]he discrete state space MAP and ICM displacement estimates for the test image 2. 

The ICM estimate is again subjectively poorer than the stochastic MAP estimate. The ICM algorithm 

failed to compute correctly the motion of the forearm and of the arm, except for the displacement vectors 

along the edge of the shirt sleeve. Also the vectors on the neck and parts of the face suggest that there 

is no motion, which is incorrect. 
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.. .... :: , . : . :  . 

~ , ~ ' . ~ . •  . 

MSE=~O.0996,0.0290), b=(O.0751,0,0787) 
(a) stochastic MAP 

.::. . .. ....... :... 

MSE=(0,1619,0.0395), b=(0.1637,0.0981) 
(b) deterministic approximation 

Fig. 4 Continuous state space stochastic and deterministic MAP estimates with piecewise 
smooth motion model for test image i: Acl=Ag, A//Ad=0.8 (a) and 0.15 (b), 
o~=i0.0. 

Similarly, the three continuous state space methods have been applied to the test image 2 (Fig. 6). 

The original Horn-Schunck estimate shows some overestimated vectors (edge of shirt sleeve) and numer- 

ous underestimated ones (uniform area to the right). The deterministic approximation performs better: 

it is more uniform and has smaller edge effects. The stochastic estimate, however, is superior in terms 

of the total energy U as well as motion field smoothness and lack of edge effects. 

5 .  C O N C L U S I O N  

In this paper two types of solution methods to the problem of 2-D motion estimation via the MAP 

criterion have been presented and compared: stochastic and deterministic. It has been demonstrated 

that, as an example of instantaneous freezing, the deterministic methods may be incapable of localizing 

the global minimum not only theoretically but also in practice. Higher value of the energy function for 

the deterministic solutions was confirmed by inferior subjective and objective (synthetic motion) quality. 

Such an improvement in estimate quality comes at a cost of increased computational effort, however. The 

computational overhead (per iteration) of the continuous state space stochastic estimation compared to 

its deterministic approximation is small (less than 25%) because it includes only the computation of the 

random update term. The number of iterations required to provide sufficiently slow annealing schedule, 

however, makes the stochastic method more involved computationally by about an order of magnitude. 
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