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Abstract  

A large number of statistical measures have been postulated for the description 
and discrimination of textures. While most are useful in some situations, none are 
totally effective in all of them. An alternative approach is to learn which measures 
are best for particular circumstances. In this paper the distributed learning system of 
constraint motion is used to learn relevant texture descriptors from a set of well- 
known first and second order grey-level statistics. Using this system, a network of 
distributed units partitions itself into sets of units that detect one and only one of 
the given classes of textures. Each of these sets is further partitioned into individual 
units that  detect natural subtypes of these texture classes, ones which do not 
necessarily produce the same types of statistics at the local level. Together, these 
units form a network capable of determining the texture classification of an image. 

1. Introduction 

"Texture" is an important cue for segmentation and for the description of 
objects that  do not always have fixed shapes (such as "trees" or "grass"). However, 
defining our notions of texture is a difficult problem. Consider the textures in Figure 
1. To our eyes they are obviously different from one another, but it is not easy to say 
exactly why. We can give vague descriptions like "rough", "uniform", "chaotic", 
etc., but unless we can define these terms mathematically they are of no use for 
machine vision. 

Many statistical measures that attempt to simulate such descriptions have been 
proposed for texture classification; these include uniform density of image features 
(Aloimonos 1988), texture energy templates (Laws 1980), and second order grey-level 
dependencies (Kruger et al. 1974; Hall et al. 1971; Haralick et al. 1973). The general 
idea is to create a measurement or small set of measurements that describe textures. 
Theoretically, textures t h a t  "look alike" to our eyes should receive similar scores 
when such a measure is applied to them. Unfortunately, there is no such single 
measure that  will accomplish this for all of the many different textures that exist in 
the world, so most classification systems use a combination of several of these 
features. Each of the n measures in the feature vector is applied to the texture 
sample in question, giving a point in the n-dimensional feature space. In the best 
case, points from similar textures will form distinguishable clusters in the feature 
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Figure 1 

space, groups of points easily separable from other groups. If so, methods (Fukunaga 
1072; Tou and Gonzolas 1974; Fu 1074) exist to learn a suitable partitioning of the 
feature space from a set of example texture images. 

Such simple clustering may not be possible, however, especially when the image 
size is small and we can see only a small portion of the texture. Consider the 
textures shown in Figure 2. The smaller Squares give several dissimilar samplings of 
the textures "marble", "pebbles", and "tree". It may well be that  no single range of 
features is sufficient to discriminate them from other textures. We may need different 
detectors for each subtype of a given texture. Learning systems that use simple 
clustering may fail to partition the problem in this manner. 

In this paper we take a different approach, applying the general learning system 
we call motion in constraint space (Sullins 1988) to the problem of texture 
classification. Textures are described in terms of a large number of simple first and 
second order statistics rather than a few complicated ones. The learning process is 
more complex, however. Each processor in the network focuses on a portion of a 
particular target texture class. That processor generalizes fl'om a set o f  example 
textures by determining which of the statistics are relevant to the task of separating 
that subtexture from the other non-target texture classes, and the ranges of those 
statistics within which the subtexture lies. When combined into a network, those 
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Figure 2 

subtexture processors detect those and only those textures that are members of the 
target class. 

2. T e x t u r e  c lass i f icat ion s tat i s t i cs  

Since this learning algorithm is designed to run on a distributed system, first and 
second order grey level statistics were deemed especially appropriate for the problem. 
The co-occurrence matrices needed to compute the second order statistics may be 
accumulated in parallel. 

The first order statistical properties of the individual grey levels used were the 
1 1 . 

mean  grey level # = - ~  i P l ( i ) ,  and the variance a 2 ~- -~-]~(~ - #)2 Pl( i ) ,  where 

P I ( i )  are the number of plxels in the image with grey level i and N is the total 
number of pixels in the image. Second order grey level statistics are relationships 
between grey levels at nearby pixels. These are generally computed in term of co- 
occurrence matr ices  P~(i , j ld ,  O), the number of points (x ,y )  and (x+deost~, y+dsin0) 
that have grey levels i and j respectively. The second order statistics (Haralick et al. 
1973) used were 

Energy:  

Inert ia : 

E(d,O) ~ E;Ej [P2(i,j[d,O)] 2 

I(d,O) ~ ~ i E y  (i - j)2 p2( i j ld ,  O) 

Correlat ion:  C(d,O) ~ ~ i E j  i j P2( i , j ld ,  O) - It, ttu where 
~z ay 
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a~ -~ ~,,j (i - #z)  2 ~-]i P2(i,jld, ~) 

~t v -~ ~, .  J ~ j  P2(i,j]d, ~) a~ ~ ~ i  (J - ~tv) 2 ~ ]  P2(i,j[d, e) 

The second order statistics were computed with values of 1 and 2 for d and 
values of 0, r~/4, ~r/2, and 3rr/4 for 0 (statistics for 0 + ~r were classified with those of 
8). Counting the two first order statistics, this gave a total of 26 statistics from an 
example image. The second order statistics were scMed logarithmically in order to 
give an approximately linear distribution, and all values were normalized to lie 
between 0 and 8. 

3. Defining learning 

We define learning as the duplication of a given input-output behavior by some 
system. Given a set of binary-valued inputs and outputs, this means that for all 
possible combinations of values of the input units (that is, all possible input vectors) 
the system activates the correct set of output units (that is, the correct output 
vector). In this context the behavior of an output may be likened to a Boolean 
formula in disjunctive normal form, and learning may be defined as the 
determination of that formula over all possible input vectors. For the problem of 
texture discrimination, the inputs are statistical measures of the sample texture, and 
each output unit is active if a particular texture type is present. 

If the DNF expression has n conjunctive subexpressions (joined by "or ' s )  then it 
may be simulated in parallel by a machine with n processors, with the speedup 
associated with such distribution. Since the expression is in disjunctive normal form, 
if any of the subexpressions are true then the entire expression is true. Each 
subexpression is the conjunction of a subset of the inputs (or their negations), and is 
true only if all of those inputs are in the correct state. 

In this sense, each input which is a part of a processor's conjunctive subterm is a 
constraint for that processor. Consider a particular input that corresponds to , the  
binary variable "A ". If the processor's conjunctive term contains A,  the input must 
have the value 1 for the processor to be active. If it contains _~, the input must have 
the value 0. If it contains neither (which we represent as "-"), then its value does not 
matter to the processor. 

As with most learning algorithms, we will assume that there exists some form of 
supervision that gives the network the correct classification (as target texture or non- 
target texture) for any given input texture. This supervision may not always be 
accurate, of course. Sometimes it may report that the target texture is present when 
it is not, and vice-versa. A learning system with applications in the real world must 
be able to cope with such errors. 

3.1. Representing the statistics 

Since the learning algorithm is designed for binary input, the continuous-vaIued 
(from 0 to 8) texture statistics were converted by assigning each value 5 binary inputs 
(giving a total of 130 binary inputs) whose activation depended on whether its value 
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S fell within a certain range: 
input 0 active if S ~ 4 input 1 active if 1 < S ~ 5  
input 2 active if 2 < S <6  input 3 active if 3 < S <7  
input 4 active if 4 < S 

This representation has the advantage of being able to represent many ranges of 
acceptable values for a statistic, depending on the number of active constraints and 
:how their ranges overlap. For example, a statistic with value 2.4 would be 
:represented as 11100. From this, we could derive a very restrictive set of constraints 
(if all 5 were constraints, then the value of the statistic would have to lie between 2 
and 3 in order for the processor to be activated), less restrictive sets of constraints 
(for instance, 11--- would confine the statistic to lie between 1 and 4), or no 
constraints ( . . . . .  would mean that the statistic is unimportant to the texture). 

4. The  learn ing  a l g o r i t h m  

In this section we outline a system called motion in constraint space that is 
designed to learn texture classifications from a set of supervised examples. While it 
will be described in terms of texture discrimination, a more general and complete 
description of its capabilities may be found in (Sullins 1988). 

Initially, each processor chooses a seed texture from the input texture examples 
receiving positive indication from an output. These input vectors correspond to 
images containing the texture type of that output (the target texture of that output). 
The states of the input units, which represent the values of the statist icsof the seed 
texture, are the potential constraints for that processor. When all these constraints 
are enforced, the processor is restricted to detecting only those textures that have 
identical statistics to the seed texture. Focusing on a particular seed texture at each 
processor and eliminating input statistics that have little or no effect on it helps the 
system to properly distribute the task of learning the behavior. 

The processor will then generalize to detect the subclass of the target texture 
class which contains the seed texture by removing these constraints. Eliminating 
constraints widens the range that a statistic may lie in in order for it to be accepted. 
In many cases we will eliminate all constraints for a particular statistic, making it 
completely irrelevant to the processor. As long as each major subclass is represented 
by a seed texture at at least one processor, this algorithm will form a network that 
correctly detects the target texture in most cases. 

The core of this system is this addition and subtraction of constraints on the 
statistics at the processors in order to minimize the difference between the expected 
and the actual texture classifications -- that isi the constraint motion. Simply put, 
we will want to place restrictions on the values of statistics (by adding constraints) 
when doing so would prevent non-target textures from being accepted and we will 
want to remove restrictions (by removing constraints) that would prevent target 
textures from being accepted. The performance of the network formed by this 
algorithm will not be perfect, of course, as no natural texture can be represented by a 
simple DNF expression. However, the processors will tend to choose those constraints 
that maximize the correctness of the texture classifications. 
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4.1. A d d i n g  cons t r a in t s  

Generally speaking, constraints should be added to processors that accept too 
many non-target input textures. Because of the DNF structure of the network, a 
texture incorrectly accepted by any processor is also incorrectly accepted by the 
entire network. A non-target texture must differ from a processor's seed texture in 
the value of one or more inputs (otherwise, that seed texture would not have received 
positive indication). Each of those inputs is a potential constraint that  would prevent 
the texture from being accepted in the future, as they would restrict the values of 
certain statistics to a point where the input texture would no longer lie within their 
ranges. Each of these potential constraints receives a positive vote for change at that 
processor. 

On the other hand, we do not wish to add a constraint to a processor if the 
constraint would prevent too many target texture images from being accepted, 
specifically those target textures not accepted by any other processor. If that 
processor were no longer able to accept such "unicluely accepted" textures, then the 
entire network would incorrectly reject them as well. For all target textures uniquely 
accepted by the processor, each input that  has a different value from that  of the seed 
texture (and thus would cause the texture to be rejected if it were to become a 
constraint) receives a negative vote against change. 

Positive and negative votes are collected for each potential constraint over a 
large sampling of the input vectors. This insures that  supervisor error will have little 
effect on the system, as the incorrect data will usually be outvoted by the correct 
data. At the end of that time, potential constraints with significantly more positive 
than negative votes are added to the processor, narrowing the acceptance range of 
the processor for those statistics. 

4.2.  Removing constraints 

The removal of constraints is somewhat similar to the addition of them, 
removing constraints that prevent target texture images from being accepted and not 
removing those that prevent non-target texture images from being accepted. The 
main difference has to do with the conjunctive structure of the processors. A texture 
may have values that tie outside of the accepted ranges of many of its statistics, so it 
might not meet many existing constraints of a processor. We want to remove 
constraints when doing so would cause more target textures to be accepted, but for 
most textures removing a single constraint will not make any difference. 

We allow all textures that are not accepted by the network to influence the 
removal of constraints, but using an exponential function to give "near miss" 
textures more influence than others. If a target texture is not accepted by the 
network, then each constraint at processor i that  prevented it from being accepted at 
that processor is given a positive vote for removal proportional to a -n~, where n is the 
number of constraints that the vector failed to meet at processor i.  That is, each 
processor is changed in proportion to how close it already is to accepting the texture; 
this helps the system to properly distribute the responsibility for accepting textures 
by assuring that only a few processors are forced to learn each one. Initially a is 1 
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(each texture has an equal effect on the voting) and over time it is increased. This 
forces a processor to focus on a particular subclass of the target texture and helps to 
stabilize the behavior of the network in the long run. 

Negative votes against removing constraints are collected in a similar manner. If 
a constraint helps to prevent a non-target texture from being accepted, it receives a 
negative vote against removal proportional to a -'~. As in the case of adding 
constraints, the input is sampled over a certain period of time. If the number of 
positive votes is greater than the number of negative votes, the constraint is 
removed, widening the acceptance range of the processor for that  statistic. 

5. E x p e r i m e n t a l  r e s u l t s  

Eight 96 × 96 texture images (shown in Figure 1) were chosen for the tests. In 
order to have co-occurrence arrays P2 of manageable sizes, the number of grey levels 
was reduced from 256 to 9 using the Isodata algorithm. A particular target texture 
was chosen for each run represented bjr a single output which was active when the 
target texture was present, inactive otherwise. This output was assigned 10 
intermediate processors. An example texture image was chosen from the target 
texture with probability 50%, from one of the other textures otherwise. The image 
was a randomly chosen 16 X 16 Subpicture of the texture. This gave a total of 6400 
possible examples for each texture. 

5.1 .  L e a r n i n g  a b i l i t y  o f  t h e  s y s t e m  

Several runs of the learning system were made (with no supervisor error) for 
each of the eight target textures shown in Figure 1. Figure 3 gives the average 
learning curves for each texture. The X axis represents the total number of examples 
presented to the network at that point, and the Y axis represents the percentage of 
the time that the network correctly classified the input as target or non-target 
texture, over samplings of 1000 input vectors. 
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The network reached a certain level of correctness very quickly (2000 - 3000 
sample input vectors), and made any further improvements very slowly. The system 
was able to make generalizations about the textures after seeing a small percentage of 
the 51,200 possible texture samples. The textures with the least correctness were 
those most easily confused with the others. The average correctness over all of the 
textures quickly stabilizes at close to 90%. This is a very good result, especially for 
sample images of size 16X16. The typical correctness of other feature classification 
systems is considered to be around 90% for 64 X 64 images. 

5,2. Deal ing wi th  supervisor  e r ro r  

Several runs were also made for each texture at various levels of supervisor 
error. Figure 4 gives the learning curves for the average correctness over all textures 
for error percentages of 0%, 10%, 20%, and 30% in the supervision. In this case, the 
Y-axis is a measure of the true correctness of the responses -- how well they matched 
the actual desired output value, before any corruption by supervisor error. The 
learning is very resilient to levels of error tess than 30% percent, and even for 30% 
the correctness seems to approach that of other levels. In fact, the correctness of the 
system for these high levels was greater than the correctness of the supervision itself, 
indicating that the network was able to find good features despite the error. 

5.3. I m p o r t a n c e  of  d i s t r ibu t ion  

As mentioned above, this system creates networks capable of recognizing 
textures from a very small sample, 16 X 16 versus the usual 64 X 64. This is due in 
large part to the system's ability to properly distribute the detection of the different 
types of samples about the network. The smallness of the sample size would often 
cause some of the expected properties of the target texture to be absent for a 
particular sample. Distribution of the target description allows the creation of 
different detectors for each of these situations. 

We measure the importance of distribution by keeping track of the percentage of 
time that each intermediate processor is active when the output is correctly 
activated, and looking at the processor with the highest percentage of activation. If it 
is close to 100%, then the set of features detected by it is a sufficient description of 
the target  texture and no distribution is needed. The lower it is, the more 
distribution was necessary. Table 1 gives percentages taken from the test runs for 
each target texture at 0% supervisor error. 

Comparing this with Figure 3 shows that the amount o f  distribution for a 
texture was directly related to the detection error -- that is, the difficulty in 
discriminating the target texture from other textures. In the cases where textures 
were similar, many different detectors with tighter constraints were needed to detect 
the target texture and only the target texture. 

Table 2 gives this distribution measure, averaged over all target textures, for the 
different levels of supervisor error. The amount of distribution increases with the 
error. As the process of texture classification becomes more confused, tighter 
constraints are needed to discriminate the textures. Since this decreases the number 
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of textures tha t  a processor can detect,  more processors are needed to cover them all. 
This distribution is one of the main reasons for the system's good performance at 
high levels of supervisor error. 

fieldstone 82.19 
ice 79.60 

marble 84.28 
pebbles 78.58 
pigskin 88.43 

ricepaper 94.89 
straw 87.24 
tree 82.08 

0 %  84.66 
10% 75.57 
2O% 64.76 
30% 60.95 

Table 1 Table 2 

5 . 4 .  U n d e r s t a n d i n g  t h e  n e t w o r k s  

Table 3 shows what  the constraints of a typical processor might look like after a 
while. This part icular  processor was one of those set up to learn the texture 
"marble" .  The table gives the constraints for the features described in section 3 (with 
angles and distances for the second o rde r  constraints), formed after  10,000 input 
vectors. In effect, it characterizes "marb le"  as having low mean, high energy and low 
inertia at distance 1 in the direction 1r/2, and low correlation at distance 1 in all 
directions. 

statistic 

mean 

E(1,0) 
E(1,Tr/4) 
E(1 ,~ /2)  
E(1 ,3u /4)  

I(1,0) 
I(1,~r/4) 
1 ( 1 , . / 2 )  
1(1,3./4) 
C(1,0) 
C(1,rr/4) 
C(1,~/2)  
C(1,3~r/4) 

constraints seed 

1 - - 11000 

- - 0 0 1 1 1  E ( 2 , 0 )  

- - 00111 E(2,~/4)  
0 0 00011 E(2 ,~/2)  

- 00111 E (2,37r/4) 

- - 00011 • ( 2 , 0 )  

- 00111 1(2jr /4)  
- - 0 11100 I(2,rr/2) 
- - 00111 I(2,37r/4) 
- o 11100  C ( 2 , o )  
- 0 111oo c ( 2 , . / 4 )  
- 0 11100 C(2,1r/2) 
- 0 11000 C(2,3~r /4)  

statistic constraints 
variance 

Table 3 

seed 

IO000 

O0111 

- 00111 

- 0 0 0 1 1  

- 00111 

- 00001 
- 00001 
- 1 1 1 0 0  

0 0 0 0 1  

10000 
10000 

. 11000 
10000 

This table demonstrates another advantage of the constraint representation. 
Besides producing networks capable of correct texture discrimination, it can also 
show us things about  the textures themselves. The statistical measures used here (and 
elsewhere) to classify textures usually do not correspond to our intuitive measures 
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(such as "roughness"), so it is less than obvious how to simply describe them in those 
terms. The final states of the constraints in processors such as Table 3 can give us 
those descriptions. 

6. Conclus ions  

We have presented and tested a distributed system that learns texture 
discrimination in terms of simple first and second order statistics. The networks 
formed by this learning system were capable of performing this task quite well, at a 
level comparable to that of more complex measures of texture. This high level of 
correctness was maintained despite small sample size and high supervisor error. 

In addition, the creation of distributed networks of different, specialized 
detectors (versus a single, general detector) was shown to be important for the 
texture discrimination problem. This was especially true for textures that were very 
similar, or under conditions of small sample size or high supervisor error, situations 
that often occur in the real world. 

6.1. Acknowledgements 
This work was supported by the Defense Advanced Research Projects Agency 

and the U. S. Center for Night Vision and Electro-Optics under Contract DAABo7- 
86-KF073. The author wishes to thank John Aloimonos and Azriel Rosenfeld for 
their advice and constructive criticism. 

Bibliography 

Aloimonos, J. (1988). Shape from texture. Biological Cybernetics, 58, 345-360. 

Fu, K. S. (1974) Syntactic Methods in Pattern Recognition New York: Academic 
Press. 

Fukunaga, K. (1972) Introduction to Statistical Pattern Recognition. New York: 
Academic Press. 

Hull, E. L., Kruger, R. P., Dwyer, S. J., Hall, D. L., McLaren, R. W., and Lodwick, 
G. S. (1971). A survey of preprocessing and feature extraction techniques for 
radiographic images. IEEE Transactions on Computers, 20. 

Haralik, R. M., Shanmugam, R., and Dinstein, I. (1973). Textural features for image 
classification. IEEE Transactions on Systems, Man and Cybernetics, 8, 640-621 

Kruger, R. P., Thompson, W. B., and Twiner~ A. F. (1974). Computer diagnosis of 
pneumoconiosis. IEEE Transactions on Systems, Man, and Cybernetics, 45, 40- 
49. 

Laws, K. I. (1980). Textured image segmentation, Ph.D. dissertation, Department of 
Engineering, University of Sothern California. 

Sullins, J. R. (1988). Distributed learning: motion in constraint space, University of 
Maryland Technical Report CAR-412. 

Tou, J. T. and Gonzalez, R. C. (1974) Pattern Recognition Principles. Reading, MA: 
Addison-Wesley. 


