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Abstract 

This paper describes a representation and computational model for deriving three dimem 
sional, articulated volumetric descriptions of objects from laser rangefinder data. What dif- 
ferentiates this work from other approaches is that it is purely bottom-up7 relying on general 
assumptions cast in terms of differential geometry. 

1 I n t r o d u c t i o n  

The ability of a robot to correctly perceive its environment is essential to tasks involving interaction 
and navigation.. Descriptions computed by the perceptual system must reflect the characteristics of 
the world; that objects take up space, are often composed of many parts, and can be articulated 
in a number of different ways. This paper is about computing such descriptions from the bottom 
up. That is, beginning with estimates of surface points obtained with a laser rangefinder, we will 
describe how an articulated volumetric description of an object can be obtained through a succession 
of intermediate representations and computational steps. Some of the building blocks that we shall 
use are well-known, but it is the way in which these are tied together and the computational aspects 
of the problem that are the principal contributions of this paper. 

Our approach follows a traditional bottom-up transition from surfaces to parts to objects i n  a 
hierarchical fashion [11, t27 19]. Darboux frames, which describe the orientation, principal curvatures 
and directions at a point on a surface [77 227 23] are used as a local representation for a surface at 
each sample point. Initial estimates of these measures are readily computable using a number of 
different approaches [3, 8~ 12]. But the technical difficulty is to refine the initial estimates, which 
are often corrupted by noise and quantization error, into robust measures. W'e have adopted a 
computational strategy based on the minimization of a residual form that measures the total deviation 
from an implicit model of surface curvature [22, 23~ 9, 10]. This approach allows us to reconstruct a 
surface from sensor data and, more importantly, to make the features that are needed for the parts 
decomposition explicit (e.g. negative local minima of curvature~ orientation and jump discontinuities) 
[11, 12, 15]. 

Contours formed by these features can serve to partition a surface into regions corresponding 
to different parts. However this grouping problem is often difficult, especially when features are 
sparse or when adjacent contours are in close proximity. An elegant solution can be obtained by 
exploiting the directional properties of the frame t associated with each feature point. Following the 
scheme devised by Zucker et al. [26], the direction vectors of each frame are used to generate a 
potential field which acts on a covering of unit length snakes (energy minimizing splines) [16, 24, 25]. 
When this system reaches a steady-state, contours are obtained that smoothly interpolate the data, 

~For brevity we will use frame to refer to Darboux frame or augmented Darboux frame, depending on the context. 
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Figure 1: Local surface representation - the augmented Figure 2: Local extrapolation using a para- 
Darboux Frame. bolic quadric approximation. 

and correspond to the reqffisite part boundaries. What is important about this scheme is that. the 
parameters of the minimization are determined primarily by the data [26]. 

Each surface partition is taken to be the visible part of a single object. Part geometry is de- 
termined by a process of inference in which a suitable volumetric primitive is fit to each surface 
patch obtained from the parts decomposition [12, 10]. Our approach is in contrast to the minimal 
length encoding strategy used by Pentland [19]. He begins with a with a fixed parametric model (a 
superquadric) and uses a minimization that seeks a best fit to data using a minimal set of primitives. 
We view Pentland's approach as a top down strategy and ours bottom up. The advantages offered 
by the latter scheme are a reduction in computational complexity, and a representation that is not 
tied to any specific model. Depending on what needs to be made explicit, an), volumetric model can 
be used to characterize a part without changing the interpretation of the object. 

The paper is structured along the computational steps that define our procedure for building 
volumetric object models from sensor data. Section 2 describes the local representation for surfaces 
and the minimization procedure used to corrlpute reliable estimates of its parazneters. The task of 
identifying the feature points that make up the part boundaries and the interpolation procedure 
for aggregating these into contours using the  potential field method are described in Section 3. To 
obtain comparative results with Pentland's approach, we used superquadric primitives to represent 
part geometry. The technique used to fit the primitives is similar to others [2, 19, 1, 6, 14], and is 
described in Section 4. Finally, the performance or our scheme on real data is shown in Section 5. 
Articulated models of two objects are derived from range maps acquired with a laser rangefinder. 

2 Local  R e p r e s e n t a t i o n  of  a Surface  

The local surface representation at a point P,  the augmented Darboux frame T~(P) [7, 22, 23] serves 
three purposes: (1) It facilitates the task of surface reconstruction, (2) makes explicit the features 
necessary for identifying putative boundary points~ and (3) provides the direction frames used to 
smoothly interpolate contours on the surface. It is explained as follows. Let the local neighbourhood 
of a point P on a surface S be represented by a parabolic quadric of the form w = au2A:cv2~ with origin 
at P and the w axis aligned with the surface normal at P, Np, as shown in Figure 1. The orientation 
of this local frame is such that the u and v coordinate axes align with two special directions on S at 
P.  These are the directions for which the normal curvature at P (a directional property) takes on 
maximum and minimum values, ~MP and g~p ,  and are referred to as the principal directions Mp 
and 2¢/p respectively [7]. The scalar quantities.~Mp and t :~p are similarly referred to as the principal 
curvatures at P.  Following the convention of [22, 23], we refer to 7)(P) = (p, Mp, .Adp, Np, ~¢MP, tOMB) 
collectively as the augmented Darboux Frame at P.  The problem is to estimate 7)(P) from laser 
rangefinder images of the form z = f ( x , y ) .  Local least-squares estimation is sometimes sufficient 
to determine gMP, g2.Ap~ and Np, but rarely Mp and ,4z/p [3, t2 I. However, the latter directional 
properties are essential to the inference of discontinuities, occluding contours, and part boundaries 
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[26]. Our approach is to use local methods to obtain a first estimate of ;D(P), and then apply a 
second stage of minimization to obtain a stable reconstruction of S. The former problem is not 
addressed in this paper, but typical approaches are described in [3, 8, 12]. 

2.1 I terat ive  Ref inement  o f  the  D a r b o u x  Frame 

Local consistency of curvature, subject to orthogonality constraints on ~9(P), is the basis of our 
minimization algorithm [18, 23]. The method was first introduced by Sander and Zucker in the 
contcxt of C.T. image reconstruction [22, 23]. Aside from the application to range data, there are a 
number of important technical details which differentiate our work from that of Sander and Zucker. 
However, the motivation is similar and can be explained with the aid of Figure 2. Because ;D(P) is 
a dual form of a parabolic quadric, one can extrapolate outward from a point Q to its neighbour P 
to get an idea of what the surface at P looks like according to its neighbour Q. By performing this 
operation for each neighbour of P, one obtains a set of frames, ~p~, each providing an estimate of P 
from its associated neighbour [22, 23]. This provides a mechanism for setting up a minimization which 
enforces the local model over the surface, somewhat analogous to the constant curvature assumption 
in [18]. What the algorithm does in practice is to iteratively update each ;D(P) with the least-squares 
estimate computed from ~p~. 

Among the considerations in formulating the algorithm are, (i) the particular form of extrapo- 
lation along the surface (related to parallel transport [7, 22, 23]) to obtain ~p~ and (ii) the form 
of minimization functional applied in updating 7)(P). For the results presented in this paper, we 
followed [22, 23] and used a parabolic quadric to estimate ~p~ from the surrounding neighbourhood 2. 
But this does not enforce the constant curvature constraint according to [17]. A better choice is 
a toroidal patch that has constant curvature along its principal directions. However, with densely 
sampled range data, the particular form of parallel transport does not appear to be critical. 

The functional itself is set up to minimize the variation in :D(P) subject to constraints on Mp, 
Mr' ,  and Np. These are, 

(Np. Np) = 1 (Mr," MR) = 1 (MR. Np) = 0. (1) 

As formulated in [22, 23], the minimization consists of two terms corresponding to ('1) the surface 
normal Np and principal curvatures EM and n~, and (2) the principal direction MR 3. To simplify 
the analysis, each is minimized independently. The first term, El ,  follows directly from [22, 23]: 

E1 = ~ l]gp - Np=]] 2 + (~M -- t~MP~) 2 + (~+~ -- ~+zP~) 2 + $( (Np.  Yp) - 1) (2) 

where ~p = (P, XMP, romp, MR, MR,  Np) and ~p~ = (P~, ~MP=, ~MP=, Mpa, Mp~,  Npa). Using stan- 
dard methods, one obtains the following updating functionals for Np, I~Mp ' and ~MP: 

" ' L L 
N(fl+l) = N( ) n N (i) ~ "  N(O ~ . AO ~(i) 

~ - - -  ~ 2 . , ' t P a  

Y~p=) + ' ( E .  N(~=) 2 + ( E .  re<i) ~2 .=, n ~ z p  a } c ~ = l  

(3) 
where the superscript i refers to the current iteration step. 

Because Mp and M p  are directions, there is a 180 ° ambiguity in orientation. For this reason the 
formulation of minimization term E~ needs to be re-cast from that described in [22, 23]. We avoid 
the ambiguity by minimizing the difference of directions in the tangent plane at point P as follows. 
Express M in tangent plane coordinates as 

Mp=blcosO+b2s inO,  (0,2r)s. t .  bl,b2 E Tp, ]lblt] = ]lb2]l = l, and (bl.b2) = 0  (4) 

2The technical details of how this is accomplished are described in [22]. 
aSince 2¢1p is orthogonal to both Mp and Np, it need not be considered. 
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Then 
n 

E2 ---- rain ~ [1 - (Mp(O). Mp~,) 2] (5) 
t~ c~=1 

M(~ +1) is found by substituting the value of 0 that minimizes (5), back into (4). Again, using standard 
methods, one obtains the follt)wing updating functional for 0: 

o( ,÷1)  = t a n -  1 - - + A , j  =  (Mp. • (6 )  
' 2A12 ' ~=1 

Note that this also determines the solution for ./Vt(~ +1) for the reason cited earlier. 
Control over iteration is maintained by tracking the convergence of the derivative of a composite 

measure Rs, which is the sum of local difference measures computed over the surface, 

=/.2, j ~ P  ,~P,) - - j 2 ,  P j e  S. (7) 
J J 

The algorithm is allowed to interate until the difference t r y ) -  R(~ - t) I falls below a specified threshold. 
A discussion of the convergence properties is beyond the scope of this paper and is addressed in 
[17~ 22, 23]. However, we have confirmed empirically over a l£rge number of experiments that the 
algorithm produces stable results quite rapidly, generally within 5 iterations. 

2.2 Ident i fy ing  Feature  Trace P o i n t s  

The point of the minimization strategy is to obtain a description of the surface S that is stable with 
respect to further interpretation [4]. This allows for a more direct interpretation of features and 
specifically avoids having to deal with the problem at the level of feature interpretation, e.g. [5]. The 
determination of features used to  partition the surface is a case in point. 

Hoffman ~c Richards [15] argue that a natural basis for surface decomposition is the principle 
of transversality regularity. Simply stated, the interpenetration of two arbitrarily shaped surfaces 
(i.e. corresponding to different parts) results in a contour of concave discontinuity of their tangent 
planes. In the context of smooth surfaces this translates into the partitioning of S into parts at locl 
of negative minima of each principal curvature along its associated family of lines of curvature [15]. 
We will refer to such loci as critical points. Thus, it is important to have stable estimates of the 
principal curvatures and directions at each point on S. The following procedure is used to determine 
the loci of critical points on smooth surfaces. 
Let ~¢M(X, y) and ~ ( x ,  y) represent stable estimates of the principal curvatures of S sampled on the 
discrete grid (x, y), with corresponding principal directions M(x, y) and A// (x,y). The directional 
derivatives in these directions are ~M(Z,y)IM and tc~j~(x,y)I.M respectively. Then P is deemed to be 
a critical point iff 

gIM(x,y)tM = 0 AND gM(X,y) < 0 OP~ tc~(x,y)l.~ = 0 AND ~ ( x , y )  < 0. (8) 

As presently implemented, the curvature consistency algorithm does not have an explicit repre- 
sentation for orientation discontinuities, but does make use of such information (i.e. an externally 
computed discontinuity map) in the updating procedure. For example, a local edge operator can be 
used to provide an estimate of surface discontinuities [13]. While this does not solve the problem 
of correctly localizing all discontinuities on a surface, it can be used to significantly reduce edge 
smoothing in the reconstruction procedure. As far as the identification of critical points due to 
concave discontinuities is concerned, these will be smoothed into negative local minima and can be 
identified as outlined above. But jump discontinuities, caused either by self-occlusions of the object 
or occlusions by other objects in the scene, are also necessary for the partitioning task. 
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Figure 3: Partitioning contours on a surface Figure 4: Tangents and the potential field 

Such points can be identified from ~p by considering the angle between the surface normal Np 
and the view vector V. Furthermore, if S is assumed to be smooth and in orthographic projection 
to the viewer, then the Z component of Np will roll off to zero along occluding contours. It is this 
latter property that we use in identifying the trace points of the occluding contour. In fact, because 
of the stability of ~p as a result of reconstruction, even a thresholding of Z component values can 
suffice in localizing these points. 

3 Piecing Together Partitioning Contours 
Critical points, orientation discontinuities, and jump discontinuities are not themselves a solution 
to the parts decomposition problem, but they can provide the materials necessary to infer the par- 
titioning contours. We will refer to such points collectively as the Set of trace points {P~}, where 
n is an index on the set. The second computational task is, given {P~} and the associated set of 
frames { ~ } ,  find the set of integral curves, v~(s) = (xk(s) ,yk(s) ,zk(s)) ,  k e (1,  no. contours ) 
that partition the surface S (Figure 3). 

The approach used to solve this problem involves the use of energy-minimizing spline fitting, 
[16, 24, 25] using the strategy devised by Zucker et al. [26] for finding a global covering of plane 
curves through a 2-D tangent field. This strategy is best understood by analogy. Consider what 
happens when iron filings are distributed on a piece of paper with a magnet placed beneath. With a 
bit of shaking the filings eventually align with the magnetic field and smoothly interpolate the lines 
of flux. In the tangent field model, the iron filings become unit length snakes that align to a potential 
field generated by the set of trace points and their tangent directions. That is, for each trace point, 
one associates a local potential with an asymmetric Gaussian profile as shown in Figure 4. The sum 
of these local potentials defines the field. 

In principle, one can extend the tangent field model to three dimensions by associating a 3D 
asymmetric Gaussian envelope with each frame of { ~ }  and including a torsion component in the 
minimization functional. However, for surfaces acquired from single viewpoint and without large 
foreshortening, it is often sufficient to assume that zk(s) ~ O. That is, one can use the planar model 
by projecting each frame ~p onto the view plane 4, where the principal direction M is used to generate 
a planar potential field as in the tangent field model. The resulting plane curves are used to segment 
a depth map of the surface into regions corresponding to parts. 

The formulation of the minimization problem is as follows. Let v(s, t) = (x(s, t), y(8, t)), 0 < 
s < 1 represent a deformable curve with kinetic energy functional T(v) defined as 

T(v) = I ~I~ulv~t ~ds, (9) 

4The XY plane, assuming orthographic projection. 
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where # is the (constant) mass density, and the potential energy functional U(v) defined as 

where wl(s)xs controls the tension of the curve, w2(s)xs~ controls the rigidity of the curve, I(v) is 
the potential field coming from {~=}, and S(v) is a force between neighbouring curves that operates 
when they are in close proximity. 

The space curves that  we seek are described by those functions x(s, t) and y(s, t) for which 

ftl 1 T(v) - U(v) (11) dt 

is a minimum. Zucker et al. [26] describe a solution for the 2D case obtained from the calculus 
of variations. This method was used in the experiments described in Section 5. Surface regions 
corresponding to  parts are obtained from the set of contours {vk(8)} using a conventional region 
labeling algorithm. 

This model of surface partitioning will not suffice for a single view without an additional assump- 
tion. That is, the silhouette contour is assumed to close a part boundary for those cases where the 
endpoints of the boundary terminate on the contour. In other words, parts can be cut out of surface 
by a segment drawn between two points on the silhouette contour. This wilt become apparent in the 
experimental results presented in Section 5. 

4 Fit t ing Part  Mode l s  

The set of contours {vk(~)} partition the surface S into a set of regions (-Jr St. For each l = 
(1, no. parts ), we now seek to infer a corresponding volumetric element Vm that best character- 
izes the 3-D shape of the part. Different subscripts a re  used to signify the fact that one or more 
surface patches Sz can map to a single volumetric element Vm, e.g. where a surface is occluded or 
where multiple viewpoints are involved. For the purposes of this paper, however, it is assumed that 
I = m. Given a set of volumetric primitives F, the final computational task consists of (1) finding 
Vm E F that best characterizes a particular St, and (2) determining the parameters of Vm by minizing 

Iv~ (*, y, z) - s~(., y, z) 1. (12) 

There are a number of different approaches to solving this problem. They range from simple 
geometric approximations [12] to more comple x fits using superquadric models [1, 6,14, 19]. Pentland 
demonstrated how superquadrics could be used to advantage in representing a wide variety of shapes. 
His success with this representation has motivated others, including ourselves, to investigate the 
use of superquadrics for object and part models. But the task is not at all straightforward. The 
minimization represented by (12) does not necessarily possess a single global minimum, i.e. the 
problem is underdetermined, and additional constraints are needed to select a suitable minimization. 
For example, it is not possible to determine the depth of a only one face, but if we add the additional 
constraint that the volume be minimized, then the only possible volumetric solution is a thin plate. 

Our approach is somewhat of a hybrid method. A simple fit to an ellipsoidal model is used to 
provide the starting point for a subsequent iterative fit to a superquadric 

F =  z ~ +  ~ ,  ~ + _  =1.  (13) 
ay ] t a-z 1 

For a superquadric in an arbitrary position 11 parameters have to be found: three translation pa- 
rameters; three rotation parameters; two shape parameters (¢1 and e2); and three extent parameters 
(a=, %, and as). The goal is to attempt to restrict the search and solution space by starting the 
minimization in the correct neighbourhood. 
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4.1 Ini t ia l  Fit  to  an El l ipso id  M o d e l  

In our experience the iterative fitting procedure will converge to an acceptable solution provided it 
has a good initial estimate of the rotation and translation parameters of the volumetric primitive Vm. 
Only a rough estimate of the extent parameters is required. The shape parameters are not critical 
and can be initialized so that the superquadric starts as an ellipsoid (el = 1, e2 = 1). 

We initialize the translation parameters to the centroid of the points in the surface patch Sz. Like 
Ferric [I1] the initial rotation parameters are found by aligning the axes of the ellipsoid along the 
principal moments of inertia of Sx about the centroid. The extent parameters are set to the maximum 
projected length of a vector from the centroid to a point on Sz for each ellipsoid axis. 

No attempt has been made to compensate for the fact that the patch corresponds to only a 
partial view of the surface. Others, e.g. [11], have imposed symmetry constraints to improve the 
initial estimate, but in practice such methods have little impact on the final result. 

4.2 I t e r a t i v e  Fit  to  a S u p e r q u a d r i c  M o d e l  

We have used the Levenberg-Marquardt gradient descent procedure [20] to minimize the error of 
fit between a superellipsoid surface Vm and a surface patch of range data Sl. The method requires 
calculation of the Jacobian of an error of fit function with respect to the adjustable parameters for 
each point of range data. Unlike others, [t, 6], we have not used Poisson distributed "jitter" to avoid 
local minima during the fitting process. GenerMly the solutions reached have been acceptable but 
in a small number of cases the procedure would benefit from the technique. 

We have tried the true euclidean measure of fit error as suggested by Gross and Boult [14] but 
found that while it tended to fit the range data'well, there was a tendency for the volume of the 
superquadric to become very large, especially when the surface patch was flat. We have found that 
the minimum volume measure motivated by Bajeszy and Solina produces more intuitive results [t]. 
Gross and Boult [14] defined a modified error of fit based on this measure as follows 

R = ~ ( F ~ ( 2 ~ , a )  - 1), (14) 

where F(2~, ~) is the translated and rotated version of the inside-outside function shown in (13) and 
is 1 when the data lies exactly on the surface. The factor a~a~az is a measure of the superquadric 
volume, so, given any set of superquadrics models that fit data equally well as measured by F(~w, ~), 
the smaller members of that set will have the lower overall error and will be preferred by the fitting 
procedure. Raising the inside-outside function to the power el shapes the error of fit to be more 
quadratic and more suited to rapid convergence under the assumptions of the Levenberg-Marquardt 
method. 

5 Experiments 

The results of two experiments are now presented that show how our strategy works for computing 
articulated volumetric descriptions of objects from laser rangefinder data. Range images used in these 
experiments are part of a standardized database available through the National Research Council 
of Canada [21]; each has been averaged down to a 256 x 256 by 12-bit resolution. The majority of 
the computation performed was done on a Symbolics 3650 Lisp machine. Rendering of the object 
models was done using the SuperSketch modeling system. 

5 .1  T h e  D o l l  

Figure 5a shows an image rendered from a depth map of a toy doll which is lying face down. The 
first stage of processing uses the curvature consistency algorithm outlined earlier to reconstruct 
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Figure 5: (a) Range image of the doll (b) Initial trace points Figure 6: (a) Snake contours at steady state. 
(e) Trace points after 5 iterations (b) Regions computed from the snake con- 

tours 

the surface, computing a stable intermediate description in the process. This is best illustrated by 
comparing Figures 5b and 5c, which show the trace points computed from the initial frame estimates~ 
and after 5 iterations of the algorithm respectively. Other elements of ~p~ are similarly stabilized. 
In examining Figure 5c, notice how the trace points serve to delineate the part boundaries. 

The frames { ~ }  associated with the set of trace points {P~} are used to generate a potential 
field for the second stage of processing. Accurate determination of the frame directions is important 
because this field is generated from a sum of local potentials, each oriented in its respective Mp. 
Snakes. are then deposited at:each trace point and are allowed to evolve in the potential field according 
to (11) until the system reaches a steady state. Figure 6a shows.the resulting contours obtained after 
running the algorithm. Because of the dense covering of trace points at the part boundaries, the result 
is not much different from that shown in Figure 5c. The interpolating behaviour of the snakes does 
become important, however, when trace points become sparser. A region map, Figure 6b, is derived 
from the snake contours by clustering the interior regions. Using this procedure, the algorithm was 
able to correctly locate the parts of the doll with one exception. The right elbow joint was not 
located, largely because the arm is straight. For this reason the forearm and upper arm are grouped 
together as a singl e part. 

f 

Figure 7: (a) Shaded image of the initial ellipsoid fit (b) Figure 8: (a) Shaded image of the final superquadric fit 
Wire frame showing parts (front) (c) (side) (b) Wire frame showing parts (front) (c) (side) 

The final stage of processing consists of fitting superquadric primitives to each of the regions 
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located above. This proceeds in two stages, beginning with an initial approximation using ellipsoids 
to define initial starting points. Figure 7a shows a rendering of these initial fits as a shaded image; 
front and side profiles of the same model are rendered as wire frames in Figures 7b and 7c respectively. 
Superquadrics are then fit to each region using the gradient descent algorithm described earlie L with 
initial conditions and volume constraints provided by the initial ellipsoid fits. Figures 8a-8c show 
the results obtained by this procedure from the same viewpoints as shown earlier in Figures 7a-7c. 
From a quafitative viewpoint, the results are very pleasing and capture the essential structhre of the 
doll. 

5 . 2  A T o y  H o r s e  

The second example is of a toy horse (actually a unicorn) shown in Figure 9a. What  is particularly 
interesting about this example is the complex nature of its surfaces. A comparison between the 
initial (Figure 9b) and final (Figure 9c) principal direction fields, i.e..A4 p, shows how the curvature 
consistency algorithm is able to correctly recover directional properties of the surface. Using the 
same procedure as above for the statue, the volumetric model shown in Figure 10a is obtained. A 
wire frame corresponding to th is  model showing each part is shown in FigUre 10b, and a depth map 
generated from the volumetric model is shown in Figure 10c. 

!!!F!!!!~!!!!!!!!!!!!!!!!~ .... 

Figure 9: (a) Range image of the toy horse (b) Prin- 
cipal direction field computed from initial estimates 
(c) Principal direction field after 5 iterations 

Figure 10: (a) Superquadtic model rendered a~ a shaded 
image (b) Wire frame of the model showing the parts 
(c) Depth map computed from the model 

6 D i s c u s s i o n  a n d  C o n c l u s i o n s  

Although the approach we have just presented is advertized as being a method for computing volu- 
metric models from laser rangefinder data, it is intended to provide a more general framework that 
includes other kinds of sensors. The augmented Darboux frame used in reconstruction can be esti- 
mated from either orientation or depth. It has already been applied to shape-from-shading [9]. In 
fact, sensor fusion is possible using this kind of m~nimization with a minimM change in the formu- 
lation. At present, no attempt is made to use cues provided by the silhouette contours in the parts 
decomposition. It is assumed that the observer is sufficiently active so as to choose a vantage point 
where part intersections are visible. A more comprehensive strategy must include analysis of contour 
as well as representation at multiple scales. Finally, the methodology for fitting part models needs to 
be extended. One of strengths of Pentland's [19] method is that model fitting takes the structure of 
neighbouring parts into account. By running the fitting procedure in parallel, constraints from neigh- 
bouring parts can be used to improve the local fit. These topics are currently under investigation in 
our laboratory. 
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